Issue No. 35

Softkeys For:

Hi-res Cribbage
Olympic Decathlon
F-15 Strike Eagle

Masquerade

"The Hobbit

Pooyan
The Perfect Score
The Money Manager

Core:

Installing a CPS Clock
Driver

Feature:

Putting a new F8 on
your Language Card

epteber 1986

e R S WL S
B = I = = - e e AR
& FEp—ERT———
- ..' <
e
o e
-‘1—- - ﬂr : &, "=
B s o8 e B e = ==
Ly AL
- e e iy ‘.! -
— £ - P e Tl e
s 3 e v, T i
- T i R N e, =l
mo—_ S N B S -'"l:. A R ST S
o o Bl S SO = o T
S e e g N
'.".'1"-!."') __": uy Y, n._., '-.___'_ ks i
e, TN ey O S R S o
S e e e M - el
- L i e) gl
e N P
.. " - oy R, LT Ty NS ‘:.'.
T T o S
R o E O D e
e e S e Rt o
Tag SRSy Ao o S
L R e N
B e e RN - i e
g e e e B

(Page 26)

BULK RATE
U.S. Postage

PAID

‘ COMPUTIST
PO Box 110846-T
Tacoma, WA 98411

Tacoma, WA
Permit No. 269

Many of the articles published in COMPUTIST detail the removal of copy protection schemes
from commercial disks or contain information on copy protection and backup methods in general.
We also print bit copy parameters, tips for adventure games, advanced playing techniques (APT's)
for arcade game fanatics and any other information which may be of use to the serious Apple user.
COMPUTIST also contains a special CORE section which focuses on information not directly
related to copy protection. Topics may include, but are not limited to: tutorials. hardware/software
product reviews and application and utility programs.
]

What Is A Softkey Anyway? Softkey is a term
which we coined to describe a procedure that removes.
or at least circumvents. any copy protection on a
particular disk. Once a softkey procedure has been
performed. the resulting disk can usually be copied by
the use of Apple’s COPYA program (on the DOS 3.3
System Master Disk).

Commands And Controls: In any article appearing
in COMPUTIST. commands which a reader is required
to perform arc set apart from normal text by being
indented and bold. An example is:

PR#6

Follow this with the RETURN key. The RETURN key
must be pressed at the end of every such command unless
otherwise specified.

Control characters are indicated by being boxed. An
example is:

6P

To complete this command. you must first type the
number 6 and then place one finger on the CTRL key
and onc finger on the P key.
Requirements: Most of the programs and softkeys
which appear in COMPUTIST require one of the Apple
]| series of computers and at least one disk drive with
DOS 3.3. Occasionally. some programs and procedures
have special requirements. The prerequisites for
deprotection techniques or programs will always be listed
at the beginning of the article under the “"Requircments: ™
heading.
Software Recommendations: The following pro-
grams (or similar ones) are strongly recommended for
readers who wish to obtain the most benefit from our
articles:
1) Applesoft Program Editor such as Global Program
Line Editor (GPLE).
2) Sector Editor such as DiskEdit, ZAP from Bag of
Tricks or Tricky Dick from The CIA.
3) Disk Search Utility such as The Inspector. The
Tracer from The CIA or The CORE Disk Searcher.
4) Assembler such as the S-C Assembler or Merlin/Big
Mac.
5) Bit Copy Program such as Copy |[Plus, Locksmith
or The Essential Data Duplicator
6) Text Editor capable of producing normal sequential
text files such as Applewriter |[. Magic Window ||
or Screenwriter .
You will also find COPYA. FID and MUFFIN from
the DOS 3.3 System Master Disk useful.
Super IOB: This program has most recently appeared
in COMPUTIST No. 32. Several softkey procedures will
make use of a Super 10B controller. a small program
that must be keyed into the middle of Super I0B. The
controller changes Super 10B so that it can copy difterent
disks. To get the latest version of this program. you may
order COMPUTIST No. 32 as a back issuc or order
Program Library Disk No. 32.

RESET Into The Monitor: Some softkey pro-
cedures require that the user be able to enter the Apple’s
system monitor during the execution of a copy protected
program. Check the following list to sec what hardware
you will need to obtain this ability.

Apple || Plus - Apple //e - Apple compatibles: 1) Place
an Integer BASIC ROM card in one of the Apple slots.
2) Use a non-maskable interrupt (NMI) card such as
Replay or Wildeard.

Apple | Plus - Apple compatibles: 1) Install an F8 ROM
with @ modifiecd RESET vector on the computer’s

motherboard as detailed in the “*Modified ROM™s™ article
of COMPUTIST No. 6 or the “"Dual ROM’s™" article
in COMPUTIST No. 19.

Apple //e - Apple //c: Install a modified CD ROM on
the computer’s motherboard. Clay Harrell's company
(Cutting Edge Ent.; Box 43234 Ren Cen Station-HC:
Detroit. MI 48243) sclls a hardware device that will
give you this ability. Making this modification to an
Apple //c will void its warranty but the increased ability
to remove copy protection may justity it.
Recommended Literature: The Apple][Reference
Manual and DOS 3.3 manual are musts for any serious
Apple user. Other helpful books include: Beneath Apple
DOS. Don Worth and Picter Lechner. Quality Software.
S$19.95: Assembly Language For The Applesofi
Programmer. Roy Meyers and C.W. Finley. Addison
Wesley. $16.95: and What's Where In The Apple.
William Lubert. Micro Ink.. $24.95.

Keying In Applesoft Programs: BASIC programs
are printed in COMPUTIST in a format that is designed
to minimize errors for readers who key in these programs.
To understand this format, you must first understand the
formatted LIST feature of Applesoft.

An illustration- If you strike these keys:

10 HOME:REMCLEAR SCREEN
a program will be stored in the computer’s memory.
Strangely. this program will nor have a LIST that is
exactly as you typed it. Instead, the LIST will look like
this:

16 HOME : REM CLEAR SCREEN

Programs don’t usually LIST the same as they were
keyed in because Applesoft inserts spaces into a program
listing before and after every command word or
mathematical operator. These spaces usually don't pose
a problem cexcept in line numbers which contain REM
or DATA command words. The space inserted afier these
command words can be misleading. For example. if you
want a program to have a list like this:

10 DATA 67,45,54,52
you would have to omit the space directly after the DATA
command word. If you were to key in the space dire tly
after the DATA command word, the LIST of the program
would look like this:

10 DATA 67,45,54,52
This LIST is different from the LIST you wanted. The
number of spaces you key after DATA and REM
command words is very important.

All of this brings us to the COMPUTIST LISTing
format. In a BASIC LISTing, there are two types of
spaces: spaces that don’t matter whether they are keyed
or not and spaces that must be keyed. Spaces that must
be keyed in are printed as delta characters (2). All other
spaces in a COMPUTIST BASIC listing arc put there
for casier reading and it doesn’t matter whether you type
them or not.

There is one exception: If you want your checksums

(See **Computing Checksums’™ section) to mateh up, you
must not key in any spaces after a DATA command word
unless they are marked by delta characters.
Keying In Hexdumps: Machine language programs
are printed in COMPUTIST as both source code and
hexdumps. Only onc of these formats need be keyed in
to get a machine language program. Hexdumps are the
shortest and casiest format to type in.

To key in hexdumps. you must first enter the monitor:

CALL -151

Now key in the hexdump exactly as it appears in the
magazine ignoring the four-digit checksum at the end
of cach line (a **$"" and four digits). If you hear a beep.

you will know that vou have typed something
incorrectly and must retype that line.
When tinished. return to BASIC with a:
E003G

Remember to BSAVE the program with the correct
filename. address and length parameters as given in
the article.
Keying In Source Code The source code
portion of a machine language program is provided
only to better explain the program’s operation. If you
wish to key it in. you will need an assembler. The
S-C Assembler is used to generate all source code
printed in COMPUTIST. Without this assembler.
you will have to translate picces of the source code
into something vour assembler will understand. A
table of S-C Assembler directives just for this purpose
was printed in COMPUTIST No. 7. To translate
source code. you will need to understand the
directives of your assembler and convert the
directives used in the source code listing to similar
directives used by your assembler.
Computing Checksums Checksums are four
digit hexadecimal numbers which verify whether or
not you keyed a program exactly as it was printed
in COMPUTIST. There are two types of checksums:
one created by the CHECKBIN program (for
machine language programs) and the other created
by the CHECKSOFT program (for BASIC
programs). Both programs appeared in COMPUTIST
No. 1 and The Best of Hardcore Computing. An
update to CHECKSOFT appeared in COMPUTIST
No. 18. If the checksums these programs create on
your computer match the checksums accompanying
the program in the magazine. then you keyed in the
program correctly. If not, the program is incorrect
at the line where the first checksum differs.
1) To compute CHECKSOFT checksums:

LOAD filename

BRUNCHECKSOFT
Get the checksums with

&
And correct the program where the checksums difter.
2) To compute CHECKBIN checksums:

CALL -151
BLOAD filename

Install CHECKBIN at an out of the way place
BRUN CHECKBIN,A$6000

Get the checksums by typing the starting address.,

a period and cnding address of the file followed by

a Oy).
xx.\'.xxx

And correct the lines at which the checksums differ.

Coping with
COMPUTIST

Welcome to COMPUTIST, a publication
devoted to the serious user of Apple][and
Apple][compatible computers. Our
magazine contains information you are not
likely to find in any of the other major
journals dedicated to the Apple market.

Our editorial policy is that we do NOT
condone software piracy, but we do believe
that honest users are entitled to backup
commercial disks they have purchased. In
addition to the security of a backup disk,
the removal of copy protection gives the user
the option of modifying application
programs to meet his or her needs.

New readers are advised to read this page
carefully to avoid frustration when

attempting to follow a softkey or when
entering the programs printed in this issue.

s ave o n s oftware

Suggested Customer Total
Title Publisher Retail Cost QTY Cost
Recommended Literature:
[0 Beneath Apple DOS (Book) Quality Software $19.95 $16.00
[J Beneath Apple ProDOS (Book) Quality Software $19.95 $16.00
[J Disk Edit (Book of Softkeys vol 1) SoftKey $12.95
Recommended Software:
[J Global Program Line Editor Beagle Bros $49.95 $35.25
[J Super IOB (Issue No. 32 w/disk) SoftKey $10.95
[1 Magic Window // (specify][or //e)Artsci $149.95 $106.00
[0 Bag of Tricks II Quality Software $49.95 $39.75
Miscellaneous Bargains
[0 Dazzle Draw Broderbund $59.95 $47.50
[J F-15 Strike Eagle Microprose $34.95 $28.00
(0 The Print Shop Broderbund $49.95 $39.75
[0 Flight Simulator II Sublogic $49.95 $44.00
[0 Night Mission Pinball Sublogic $34.95 $30.75
0 Exodus Ultima III Origin Systems $59.95 $47.75
(] Hitchhiker’s Guide to the Galaxy Infocom $39.95 $31.00
[0 Witness Infocom $39.95 $31.00
[0 Dino Eggs Microlab $40.00 $20.00
O Zork III Infocom $44.95 $35.00
Subtotal
Shipping*
Total

*Domestic Shipping and Handling: $2.00 per item. Five or more items FREE.

Name ID#
Address
City State Zip

Country Phone
Z= - - - Exp.
Signature CP35
To order, complete order form and mail to: COMPUTIST PO Box 110937-SOS Tacoma, WA 98411

Offer good while supplies last. Washington residents add 7.8 % sales tax. Foreign orders inquire as to
appropriate shipping and handling fees. Limited offer, expires December 31, 1986.

FREE COMPUTIST

YES! You Get 2 FREE ISSUES
fJor every NEW subscriber that you sign up.

We’ll extend your current subscription by 2 issues for every new paid subscription
you get to fill out the subscriber forms below.

BUT.. First Class subscribers MUST recruit First Class subscriptions to receive the 2 extra issues.
This rule (same mailing class) also applies to Foreign rates.
Standard US subscribers can recruit any new subscriptions and extend their standard subscriptions.
US funds drawn on US bank. Send check/money order to: COMPUTIST PO Box 110846-T Tacoma, WA 98411

CURRENT SUBSCRIBER CURRENT SUBSCRIBER

O Add two issues to this subscription. [Add two issues to this subscription.
0O Renew my subscription. Payment is enclosed. [0 Renew my subscription. Payment is enclosed.
O US: $20 US First Class: $24 [Can/Mex: $34 O Other Foreign: $60 0O US: $20 US First Class: $24 ([Can/Mex: $34 [J Other Foreign: $60
Name. 1ID# Name ID#.
Address Address
City State Zip City State Zip
Country Phone Country Phone

~ —

L _ - - - Exp. Exp.
Signature CP35 Signature CP35
If you let your subscription expire, you are considered a NEW subscriber If you let your subscription expire, you are considered a NEW subscriber
and are NOT eligible for the free issues. and are NOT eligible for the free issues.
NEW SUBSCRIBER NEW SUBSCRIBER

Yes, I want to subscribe to your fine publication. Yes, I want to subscribe to your fine publication.
[0 US: $20 US First Class: $24 [0 Can/Mex: $34 [Other Foreign: $60 O US: $20 US First Class: $24 [Can/Mex: $34 [Other Foreign: $60
Name Name
Address Address
City. State. Zip City State. Zip
Country Phone ' Country = Phone
e A sl
Signature CP35 Signature. CP35

Attention COMPUTIST Collectors

The following back issues are practically gone. Once they have sold-out,
they will no longer be available in magazine form to our readers.

11 Softkeys | Sensible Speller | Exodus: Ultima III | Readers’ Softkeys | SoftPorn Adventure | The Einstein Compiler v5.3 | Mask
of The Sun | Features | Copy][Plus (4.4C): Update Of An Old Frl?nd | Parameter List For Essential Data Duplicator | Core | Ultimaker
III | The Mapping of Ultima III | Ultima II...The Rest Of The Picture |

13 Softkeys | Laf Pak | Beyond Castle Wolfenstein | Transylvania | The Quest | Electronic Arts | Snooper Troops (Case 2) | DLM
Software | Learning With Leeper | TellStar | Core | CSaver: The Advanced Way to Store Super IOB Controllers | Adding New Commands
to DOS 3.3 | Fixing ProDOS 1.0.1 BSAVE Bug | Review | Enhancing Your Apple | Feature | Locksmith 5.0 and Locksmith Programming
Language |

23 Softkeys | Choplifter | Mufplot | Flashcalc | Karateka | Newsroom | E-Z Draw | Readers’ Softkeys | Gato | Dino Eggs | Pinball
Construction Set | TAC | The Print Shop: Graphics Library | Death In The Caribbean | Features | Using A.R.D. To Softkey Mars Cars |
How To Be The Writemaster | Core | Wheel Of Money |

First Come, first served. Some issues may be slightly damaged. No reservations allowed, prepayment only with ZE@®. To order, phone (206) 474-5750 or use

the order form on page 31. For phone orders, please have subscriber ID number and ship-to address ready. Normal back issue rates apply to foreign orders.
Washington State residents add 7.8% sales tax.

3

984 (©1984 Chris Cole]l

b

This month’'s cover:
Graphics from Penguin's “Sword of Kadash. ™

Address all advertising inquiries to COMPUTIST, Advertising
Department, PO Box 110816, Tacoma, WA 98411. Mail
manuscripts to COMPUTIST, PO Box 110846-K, Tacoma, WA
98411.

Entire contents copyright 1986 by SoftKey Publishing. All
rights reserved. Copying done for other than personal or internal
reference (without express written permission from the publisher)
is prohibited.

The editorial staff assumes no liability or responsibility for the
products advertised in the magazine. Any opinions expressed
by the authors are not necessarily those of COMPUTIST
magazine or SoftKey Publishing.

Apple usually refers to an Apple][computer and is a trademark
of Apple Computers, Inc.

SUBSCRIPTIONS: Rates (for 6 issues): U.S. $20, U.S. ist
Class $24, Canada & Mexico $34, Foreign $60. Direct inquiries
to: COMPUTIST, Subscription Department, PO Box
110846-T, Tacoma, WA 98411. Please include address label
with correspondence.

DOMESTIC DEALER RATES: Call (206) 474-5750 for more
information.

Change Of Address: Please allow 4 weeks for change of
address to take effect. On postal form 3576 supply your new
address and your most recent address label. Issues missed due
to non-receipt of change of address may be acquired at the
regular back issue rate

COMVMIPUTIST

Issue 35 September 1986

Publisher/Editor: Charles R. Haight Managing Editor: Ray Darrah
Technical Editor: Robert Knowles Circulation: Debbic Holloway
Advertising: (206) 474-5750 Printing: Valco Graphies Inc.. Scattle. WA
COMPUTIST is published monthly by SottKey Publishing. 5233 S, Washington. Tacoma., WA 98409
Phone: (206) 474-5750

softkeys:
10 Hi-res Cribbage

by William Hinger

12 Olympic Decathlon

by Marc Lirette

14 Revisiting F-15 Strike Eagle

by Jim Wallace

24 Masquerade

by Steve and Rod Smith

28 The Hobbit
by J. J. Gifford

feature:

20 Putting a New F8 on Your Language Card
If you'd rather not modify your motherboard to put an EPROM containing your own F8
then you can follow this procedure utilizing your language card. by Ken Burnell

core:

16 Exploring ProDOS by installing a CPS
Clock Driver

Using this article, you can make your CPS multifunction card automatically stamp the time
and date on every file you SAVE. by Paul Blumstein

review:

22 The Senior PROM
by Robet Knowles

APT:

26 Sword of Kadash
by John Della Pia

departments:

4 Input
6 Most Wanted List
4 Readers’ Softkey & Copy Exchange

Datasoft’s Pooyan by Kevin Sartorelli, Mindscape's The Perfect Score by P. J. Thompson,
Windham Classics’ Alice in Wonderland by Charles Taylor, Sterling Swift's The Money
Manager by P. J. Thompson., Hoffman Educational’s Good lhmkmg, oy P . Ilmmp.mn.
Sir Tech’s Rescue Raiders by Steve and Rod Smith

Please address letters to:

COMPUTIST
Editorial Department
PO Box 110846-K
Tacoma, WA 98411

Include your name, address and
phone number.

Correspondence appearing in the
INPUT section may be edited for
clarity and space requirements. In
addition, because of the great
number of letters that we receive and
the small size of our staff, a response
to each letter is not guaranteed.

Our technical staff is available for
phone calls between 1:30 pm and
4:30 pm (PST) on Tuesdays and
Thursdays only.

Another Halley Project

The softkey for the Halley Project you
presented a few issues ago didn't work when
[tried it, but fortunately I was able to find a
new one that worked on my copy.

RUN COPYA

Press Reset when the slot and drive questions
appcar. Now type:

CALL -151
B925:18 60

199 POKE 47426,24
249 POKE 47426,56
259 POKE 47426,56
RUN

When finished. run your favorite disk editor
and change track $11. sector $0, byte $9A to
$1D (as in previous softkey). Done!

Also, for those of you who love to mess
around with programs, the initial hi-res picture
runs from track $0D. sector $OF through all of
sectors $OE and $0F. Unfortunately, this picture
is loaded in a very odd way. In even groups
of eight lines. the two sets of four are switched!
Fortunately. after a bit of sweating, [came up
with a routine to fix it. Since the process is fairly
simple. the routine is like a toggle. If you run
it twice. it will return to its original format.

Hard to explain. Just try it. Converts page 2
($4000) picture to new format on page |
($2000).

6000:A0 00 84 06 84 08 A9 40
6008:EA EA EA EA 85 07 B2 06
6010:AA A5 07 38 E9 40 EA EA
6018:C9 10 B0 05 18 69 30 90
6020:93 18 69 10 85 09 84 08
6028:8A 92 08 CO 00 DB 05 A5
6030:07 C9 60 DO 81 60

1) First, use a Super IOB controller to copy
tracks D, E, and F onto a normally initialized
disk.

2) Then (this is the tricky part) build a TS list
for this hi-res screen just like DOS would;
increasing sectors, decreasing tracks. Also,
make a catalog entry. Consult Beneath Apple
Dos for details.

3) Now make and save your own screen on the
same disk under the same name. This will
insure that it falls on the same track.

4) Since DOS inserts 4 bytes at the beginning
of each file, move the entire file ($2000-$3FFF)
left 4 bytes.

5) Now mess it up with the subroutine above
and save it again.

6) Copy it back to the working copy.

7) Using your finest optic abilities (or the little
scrap of paper that has the top 4 bytes of the
picture), reconstruct these 4 bytes and place
them on track $F, sector $F, using your favorite
sector editor. (Note: it’s usually easier to do
this if you intentionally leave the 8th line from
the top blank because all you have to do then
is just zero those bytes.)

P.S. Those NOP's don't mean a thing. I was
revising the code and I didn’t want to recalculate
all the relative branches. Also, this code is
heavily 65C02 dependent.

John Clements
San Francisco, CA

Copy][Plus 6.0 on a Franklin

I recently bought a copy of COPY |[Plus
Version 6. I have a Franklin Ace 1000 and
could not boot this program. [had to modify
the code in order to run it. Herc's how to get
ProDOS Version 1.1.1 or 1.0.1 running on
your Franklin Ace 1000 or 1200:

1) Boot the ProDOS system disk. You will see
a title screen with Apple’s copyright notice.

4 COMPUTIST No. 35

2) When the system locks up, press the Reset
key. You will jump into the monitor and sec
the prompt ().

3) To start the drive and boot the disk under
Version 1.1.1, type:

269E:EA EA
2000G

4) Under Version 1.0.1, type:

265B:EA EA
2000G

You can make a permancnt patch to Version
1.1.1 by typing:

BLOAD PRODOS,A$2000,TSYS
CALL -151

269E:EA EA

BSAVE PRODOS,A$2000,L$3A00,TSYS

I hope this helps some of you Franklin Users.

Larry Altuna
Staten Island, NY

Another Blazing Paddles

Was I happy when I received COMPUTIST
No. 31, and saw a softkey for Blazing Paddles.
thinking I would finally get a good backup. Well
guess what happened... that's right, I have a
different version from the one you published.
However, by using the information from Frank
Caronc’s article and making some educated
guesses, I was able to make a COPYA disk.
Here's the procedure.

1) Copy the disk with COPYA.

2) Use your favorite sector cditor to change:

TRACK SECTOR BYTE FROM TO
0 s 13w EA
14 F7 EA

3) Write the change to the disk and you're done!
You have a great magazine - keep up the
good work!

Steve Rodgers
Libby, MT

Dollars and Sense

Here's a softkey for Dollars and Sense by
Monogram.

1) Copy the disk with COPYA.

2) Run a sector editor and go to track $0. sector
$5. Enter the following values starting at byte
$8C:

EA A5 02 38 E9 40 85 04 A5 03 E9 00 85 05
A@ 3F Bl 04 91 02 88 10 F9

3) That’s it.

Dan Agnew
Fairport, NY

ProntoDOS Procedure

I'm grateful to Tom Weishaar for putting the
65C02/ProntoDOS issue to bed and for letting
us know about his newsletter (my check’s in
the mail).

I have a friend who read about the alleged
incompatability of ProntoDOS and his new
65C02 and held off installing the chip - until
I told him that there was no problem! Of course,
it works fine.

And speaking of my favorite **fast DOS™",
ProntoDOS - in COMPUTIST No. 30, you
published a nice article by Phil Goetz,
Increasing Your Disk Capacity. In the article,
Phil told of a procedure to capture fifteen
sectors from track two of a DOS 3.3 disk that
might seem slightly messy for a beginner. There
is a much easier way to do this if you want to
use ProntoDOS. Since ProntoDOS only uses
tracks zero, one and sector zero of track two,
it is a natural to copy right onto a disk that has
been INITed for thirty five tracks. Using this
procedure would eliminate the need for step 2
in Phil’s article. The procedure would be done
after the new disk was INITed in step 5 and
would read as follows:

6) Use Copy][Plus to copy ProntoDOS to the
new disk. Or use any bit-copy progran copying
only tracks 0-3.

The patch in step 3 of the article covers
patching the VTOC to show that only sector
zero on track two is in use (bytes 40 and 41
on track $11 sector $00 are changed from their
normal values of $00 @ [no sectors free] to $FF
FE [only sector zero in usc]).

Anyone can have a disk with only the extra
fifteen sectors on track two freed up by INITing
a disk with ProntoDOS thusly:

1) Boot a disk with ProntoDOS installed on it.

2) Reset the computer to get the Applesoft
prompt.

3) Put a blank disk in drive 1 and type
INITHELLO to INIT the disk with a program
called HELLO. Note the space after INIT and
HELLO was purposely left out as it’s optional!
And that isn't in any Apple Company
publication that I've ever read!

Another hint when using ProntoDOS - a lot
of people run into the problem of looking at the
Boot Program Name using COPY][Plus. Well.
you won't sec it, and you get the message. “"NO
BOOT PROGRAM TO CHANGE"" because
the Boot Program is not in the usual DOS 3.3
spot on track $1, scctor $9 at byte S$75.
ProntoDOS stores its boot program name at
track 1. sector 7, byte $75.

If you want to change the Boot Program
Name, you've got two choices. Use a sector
editor to change the name. Or., INIT a new disk
with ProntoDOS using the desired name instead
of HELLO. and copy over all your files from
the old disk to the new one.

Finally, what do you do if the desired Boot
Program isn't an Applesoft program but a
binary program or a file you want to EXEC?
Simple. according to Beneath Apple DOS, page
7-3. the byte at $9E42 in a 48K DOS 3.3 should
be 06, 34 or 14 for Applesoft/Integer, binary
or EXEC files respectively. This byte is found
on the DOS 3.3 disk on track 0. sector $0D,
byte $42 and on the ProntoDOS disk two sectors
behind that at track 0, sector $0B, byte $42.

PLEASE publish more COMPUTIST!

Khalid Abu Kabbous
Kingdom of Saudi Arabia

About Rescue Raiders

First, [am very glad there is a magazine for
apple users like COMPUTIST. It is the only
computer magazine I find worth subscribing to
and the only magazine I find myself always
anxious to receive in the mail. Keep up the good
work. Next, though I"'m not much of a hacker,
I find I can easily type in codes from your
magazine. Here are a few questions that I have.
On page 6 of COMPUTIST No. 16. it mentions
that to access the cheat mode on Rescue
Raiders, you have to type in POPPY. It also
mentions that different versions of the game

might require different passwords. (On page 4
of COMPUTIST No. 26 it lists the password
as ZIPPY). In issue 16, it also says that to find
the password for your version of the game. look
on track SOF. sector $9. bytes $A8 to SAC and
read backwards. My friend and I both own
copies of the game and when we read bytes SA8
to SAC on our disks we both get different
garbage, though we both do have BOBBYPIN
spelled backwards at bytes $70 to $77. But for
both of our disks. when we typed the password
in. none of the cheat features would work. The
cheat features would only work if the disk was
deprotected with the method used in issue 16.
Then the cheat mode worked fine, but whenever
you wanted to fire bullets to the right. the bullets
would be pulled up into the air instead of
coming down. Does any reader out there know
how to fix this problem with their deprotected
copy?

Also. I have a copy of Graphics Expander
by Springboard that I cannot backup properly.
I tried your softkey for Newsroom on page 18
of COMPUTIST No. 23 on it and the program
seems to run fine (even the Newsroom demo
on it works) until after it checks to see if there’s
a disk in drive 2. Then the program just reboots.
Finally, I have four games for the Apple made
by Atarisoft. Galaxian, Jungle Hunt. Gremlins,
and Centipede. I've tried everything to copy
them but nothing seems to work. Any
suggestions?

Besides that, all the other softkeys I've tried
from your magazine work. Again. keep up the
good work!!!

A Khan

Canada
Mr Kahn: Most Atarisoft software can be
copied by 1yping:

B942:18
and RUNning COPYA.

Silent Service Stuff

I would like to see Silent Service by
Microprose on your Most Wanted List, as it
seems to be impossible to backup with EDD.
Copy [Plus or Locksmith. or any other
program I have access to.

I tried to deprotect it by making a copy with
EDD T0-T23 and using a sector cditor to
change bytes starting with CA: from 20 3A DB
to EA EA EA 60 on tracks 4 and 5 and sector
9 (both tracks) with partial success. This
climinated the message HARDWARE
FAILURE but the message YOU HAVE RUN

COMPUTIST No. 35 5

INTO AN ENEMY MINE invariably occurs
after about 5 to 10 minutes of play. I have never
received this message while using the original
disk.

It is easy to tell if you are going to get the
ENEMY MINE message while the program is
loading, (after selecting the level), as it loads,
with an audible track change.

My manual is marked Change 1, 15 Sept 85.
The same as in your article on page 4 of
COMPUTIST No. 30. The method by Mr.
Lemme does not work on my copy, or perhaps
he did not use the copy long enough for the
ENEMY MINE message to occur.

I consider your publication the best Apple
magazine on the market, with Nibble running
second and inCider in third place, and I look
forward to each issue of COMPUTIST.

Sheldon M. Atterbury
Sierre Madre, CA

Apple Only?

Since no one seems to be arguing against
retaining COMPUTIST as an Apple only
magazine, I thought I would try and give a bit
of an argument for the other side. My
suggestion is that the magazine should be
devoted to hackers (in the original sense of
computer afficionados rather than vandals) and
to open architecture computers. At the present
time then this would mean that the magazine
would be devoted mostly to Apple with small
sections devoted to the IBM PC and clones and
perhaps the Amiga.

Don’t get me wrong, I like the Apple, and
it will be around for a long time. But, nothing
lasts forever. The Model T Ford was once the
automotive equivalent of the Apple; however
a magazine presently devoted to Model T Fords
would have relatively limited circulation.
People who are seriously interested in
computers will naturally progress towards
machines that have 16 or 32 bit processors that
can access a lot of memory quickly.

I am convinced that before long we will have
computers with gigabytes of memory both on
optical discs and in RAM that will permit an
explosion of innovative programming that will
make today’s programs seem childish by
comparison. I don’t believe that Apple will be
part of this explosion. There is one further
consideration. The Apple market is presently
saturated with relatively good programs
considering the limitations of the Apples slow
processor and small amount of memory.
However, the market for IBM PC programs is
presently wide open. Anyone who uses a PC

knows that there is a tremendous market out
there for innovative games that aren’t merely
re-written from other comuters, and especially
for utilities. The utilities presently available for
the PC are few in number, greatly overpriced,
difficult to use and come with documentation
which is verbose, confusing and incomplete.

I might add that there is also a terrific market
out there for people who can crack IBM
programs so that, for instance, they may be
installed on a hard disk. (Jeff (my brother) tells
me that most IBM programs are pretty easy to
crack.)

If the magazine were expanded by one double
page for the IBM and otherwise remain the
same size, I think that the interests of the die-
hard Apple fanatics could be served as well as
the interests of those of us who wish to move
on to more powerful machines.

David W. Rivett
Canada

About Autoduel

This is probably a rather strange letter. It’s
a partial softkey for Autoduel by Origin
Systems. The softkey for Autoduel is very
similar to the Ultima IV softkey by Mike
Roetman in COMPUTIST No. 28. Autoduel
performs fine when you use this softkey except
for when you wish to go to the Arena fe .ture
in the game. The disk just whirls on doing
nothing. Maybe you or some other readers can
solve this problem.

1) INITialize a disk with:
INIT HELLO

2) Run Super IOB v1.5 with the Ultima IV
controller in COMPUTIST No. 28.

3) type in this program.
10 PRINT CHR$(4) “BRUN B[JA T”

4) Save this as your hello program on copy of
Autoduel.

SAVE HELLO

5) Make the following change to file called
“SOAIP”

BLOAD S(JAJP

CALL -151

11A1:EA EA EA

11A6:EA EA EA

11B8:B7

11BA:E8

BSAVE S{(JA] P,A$800,L$C00

Dan Agnew
Fairport, NY

6 COMPUTIST No. 356

Most

Wanted

List

Need help
backing-up a particularly
stubborn program?
Send us the name of the program and its
manufacturer and we'll add it to our Most
Wanted List, a column (updated each issue)
which helps to keep COMPUTIST readers

informed of the programs for which softkeys
are MOST needed. Send your requests to:

COMPUTIST
Wanted List
PO Box 110846-K
Tacoma, WA 98411

If you know how to deprotect
unlock, or modify
any of the programs below,
let us know. You'll be helping your fellow
COMPUTIST readers and earning MONEY
at the same time. Send the information to
us in article form on a DOS 3.3 diskette.

Mouse Cale Apple Computer
Apple Business Graphics Apple Computer
Jane Arktronics
Visiblend Microlab
Catalyst Quark. Inc.
Gutenburg Jr. & Sr. Micromation LTD
Prime Plotter Primesoft Corp.

The Handlers Silicon Valley Systems
The Apple’s Core: Parts 1-3 The Professor
Fun Bunch Unicorn
Willy Byte ... Data Trek
Cranston Manor Sierra On-Line
Snoggle Broderbund
Robot War Muse
ABM Muse
Mychess II Datamost
Story Tree Scholastic
Agent U.S.A. Scholastic
Handicapping System Sports Judge
Dollars & Sense Monogram
Echo Plus Agranat Systimes
Great Cross Country Road Race Activision
Raster Blaster Budge Inc.

Odin Odesta
Mabel’s Mantion Datamost
Brain Bank The Obscvatory
Under Fire Avalon Hill
Crimson Crown Penguin
Crypt of Media Sir Tech
EDD IV Udlico Microware

readers’ softkey & copy exchange

Kevin Sartorelli’s softkey for-...

Pooyan

Datasoft, Inc.
19808 Nordoff
Chatsworth, CA 91311

Requirements:
A blank disk
At least 48K

This method requires a RAM card to run the
game as the title picture is stored there. If there
is no RAM card the game will still run but there
will be rubbish instead of the title picture. The
softkey is given in a cookbook fashion to save
space as the boot code trace is quite long.

The first boot stage starts off with an illegal
opcode that ignores the first two bytes ($801
and $802). The rest of the boot trace you should
be able to follow, should you feel like it, by
liberal use of the monitor ‘L'’ command.

1) Boot a DOS 3.3 disk. Type FP to clear any
BASIC program.

2) Insert a blank disk in the drive and type
INIT HELLO

to create a slave disk with a null (empty)
greeting program (needed later in the softkey).

3) Go into the Monitor.
CALL -151

4) Insert the POOYAN disk into drive one.

5) Move the initial boot code from ROM to
RAM.

6600<C600.C6FFM

6) Load the first boot stage from the disk.

66K8:0
6600G

7) Turn off the drive.
COES

8) Alter the boot code.

6659:20
66F8:4C
2000<800.8FFM

9) Change where the code is stored.

209D:CA
20A0:A
20B3:0

10) Decode the second boot stage to SA00.
2097G

11) Prepare to use our modified boot code.

89B:0A EA
85E:EA

12) Modify the boot code to jump to our
routine.

A6C:4C 00 B7

13) Modify the next boot stage to jump back
to our routine when finished.

B700:A9 4C 8D DA 04 A9 00 8D DB
B709:04 A9 B8 8D DC 04 4C 84 04

14) Add code to save the text page.

B800:A0 00 A2 04 B9 00 04 99
B808:00 34 C8 DO F7 EE 06 B8
B810:EE 09 B8 CA DO EE AD 82
B818:CO 4C 59 FF

15) Load in the main game and save the text
page.
6600G

16) Turn off the drive again.
COES8

17) Move some code to a safe place.
A000<2000.26FFM

18) Clear the screen and HOME the cursor.
FC58G

19) Load in the title picture.

400<3400.37FFM
2B:60
819CG

20) Move half the picture to $5000 and the other
half up to $3000.

5000<3000.3FFFM
3000<2000.2FFFM

21) Restore the code moved in step 17. and pack
other code into unused space.

2000<A000.A6FFM
2700<8D00.9SFFM
4500<8A00.8CFFM

22) Type in some code to get the picture from
the language card.

819C:AD 80 C0 A9 EO 8D AF 81
81A4:A9 20 8D B2 81 A2 20 A¢
81AC:00 B9 00 E0 99 00 20 C8
81B4:D0 F7 EE AF 81 EE B2 81
81BC:CA DO EE AD 82 C0 AD C4
81C4:Co EE F4 03 60

COMPUTIST No.

23) Type in code to move the code to the correct
places in memory and put the picture in the
RAM card.

4800:AD 81 Co AD 81 CO A2 10
4808:A0 00 B9 00 30 99 00 E0
4810:C8 DO F7 EE 0C 48 EE OF
4818:48 CA DO EE A2 10 B9 00
4820:50 99 00 F0 C8 DO F7 EE
4828:20 48 EE 23 48 CA DO EE

4830:AD 82 CO A2 09 B9 00 27
4838:99 00 8D C8 DO F7 EE 37
4840:48 EE 3A 48 CA DO EE A2
4848:03 B9 00 45 99 00 8A C8
4850:D0 F7 EE 4B 48 EE 4E 48
4858:CA DO EE AD 57 C0 AD 54
4860:C0 AD 52 CO AD 50 Co 4C
4868:00 60

24) Add a jump to our routine.
CFD:4C 00 48

25) Boot the slave disk made at the beginning.
BSAVE POOYAN,ACFD,L7D03

26) Type BRUN POOYAN to play the game.

b

P. J. Thompson’s softkey for...

The Perfect Score

Mindscape Software
P.O. Box 506
Northampton, MA 01601

Requirements:

Apple]

COPYA

A sector editor

Twelve blank disk sides

The Perfect Score is a huge program written
in the FORTH language for high school students
preparing for the SATs. The verbal sections are
quite easy while the math is fairly difficult. It
is reasonably priced and not heavily protected.
Although a bit copier cannot copy it.
modification of the protection code will wipe
out any problems in backing up the program.
Here it is step-by-step:

1) Load COPYA and change the RWTS to
ignore errors:

RUN COPYA
CALL -151
B942:18
3DOG

70

RUN

35 7

readers’ softkey & copy exchange

2) Copy all twelve sides of The Perfect Score.
This may take a while because the sectors are
written in a funny order.

3) Start up your sector editor and make this
patch on each disk:

Track Sector Byte To:
S0 $9 $40 $4C
$0 $9 $41 SD4
$0 $9 $42 02

That’s all! This skips the protection loaded
upon booting and is used constantly throughout
the program. Enjoy this program and hope for
a perfect score. i

Charles Taylor revisits...

Alice in Wonderland

Windham Classics
One Kendall Square
Cambridge, MA 02139

Requirements:
Super IOB v1.5
One blank two-sided disk

After reading Allan Migdal’s softkey for
Alice in Wonderland (COMPUTIST No. 29),
I realized that I had a different version. The
main difference is that all files are not

8 COMPUTIST No. 35

CATALOGable by normal methods. Also. the
boot program is HELLO, not STARTUP.

Step by Step

1) Install the Super IOB controller below and
use it to copy both sides of Alice in
Wonderland. The address and data epilogues
have been changed from DE AA to FF FF.

2) Copy DOS from your DOS 3.3 system
master to the boot side of the copy of Alice.
Use Super IOB to copy tracks 0-2 or use
something like Copy II Plus’ **Copy DOS™
option. That’s all!

I would like to present two better methods

of “*“BRUNning STARTUP’’ than the method
used by Mr. Migdal in his softkey:
1) Change the **hello’” program with Copy]|
Plus. This automatically makes the DOS
changes necessary to BRUN programs on
booting.

2) Or. boot the DOS 3.3 master. Then type
POKE 40514,52

and INIT a disk with the name of the binary
“*hello™” program. To EXEC a text file as the
“*hello’” program, use POKE 40514.,20.

controller

1000 REM ALICE CONTROLLER #2

1910 TK=0:LT=35:ST=15:LS=15:CD=WR :FAST
=1

1920 GOSUB 490 : RESTORE : GOSUB 170 : GOSUB 610

1030 GOSUB 490 : GOSUB 230 : GOSUB 610 : |F PEEK
(TRK) = LT THEN 1050

1040 TK = PEEK (TRK) : ST =PEEK (SCT) : GOTO 1020
1050 HOME : PRINT "COPYDONE" : END
1060 DATA 255 .255 ,255 255

controller checksums

1000 - $3568 1040 - $44C8
1010 - $2544 1050 - $9B42
1020 - S$F372 1060 - $BA53

1930 - $A259

P. J. Thompson’s softkey for...

The Money Manager

Sterling Swift Publishing Co.
7901 South IH-35
Austin, TX 78744

Requirements:

Apple][computer
COPYA or equivalent
A sector editor

Two blank disks

The Money Manager is a simulation of
business made for educating the user. Although
the copy protection is not extensive, it isn’t easy
to bit copy without parms. It checks for a totally
illegal byte between two of the address headers.
If we can avoid this routine, the program would
be unprotected.

1) Load COPYA or any other sector copier and
copy both disks on to your backup.

2) Load up your sector editor and make the
following patches to both disks:

Track Sector Byte From To:
$00 $0B $58 $4C SEA
$00 $0B $59 $E5 $BD
$00 $08 $5A $BC $8C

P. J. Thompson’s softkey for...

Good Thinking!

Hoffinan Educational Systems

Requirements:

64K Apple ||

A sector editor

Twelve blank disk sides

readers’ softkey & copy exchange

s eS|

mliii.iilil

=
Ay =
=

Good Thinking! is a new program written
in Pascal designed to improve language among
young kids. It can be copied normally but upon
bootup the copy will not be accepted. After
scanning the disk for a BD 8C CO (LDA
$C08C,X), which is a common instruction used
to read bytes off the disk, I made a small patch
which bypasses the protection. This softkey is
for Level One programs.

Here it is step-by-step.
1) Load COPYA or any other full disk copier.

2) Copy all twelve sides of the Good Thinking!
disks. If you want to save a little room you can
double side your disks.

3) Boot up your sector editor.

4) On each disk make the following patch at
byte $B6 from $4C to $60. This will be done
on a different sector for each disk. Here is a
list of the disks and the corresponding sector
to modify:

If these sectors do not contain a 4C F8 00
(JMP $OOF8) at byte $B6 then it is the wrong
sector. Either check again or search your disk
for a BD 8C C0. Make sure the sector in which
you found those bytes are on a track greater than
$3 and then do your patch. On the first two
tracks these bytes are used constantly for the
disk operating system. Hopefully you won’t
have to go through this mess but the softkey
should work either way.

Steve and Rod Smith’s patch for...

Mockingboard
Rescue Raiders

Requirements:
COPYAable version of Rescue Raiders
Sector Editor

Those of you who own Mockingboards may
have been a bit frustrated when after following
the softkey for Rescue Raiders in COMPUTIST
No. 16. When I tried it. I found that the
program froze at the main screen.

Well, as it turns out, the program checks for
a Mockingboard. but does not do anything with
it after it's found one. except hang. Here is an
easy patch to apply to your backup that will
eliminate the check and play the game without
having to remove your Mockingboard.

With a sector editor, apply these changes to
your backup:

Track Sector Byte Change to

$15 $01 $02 $CO
$15 $01 $05 $60

Disk Trk Sect
CAUSE & EFFECT $1C 36
DRAWING CONCLUSIONS $20 $8
PREDICTING OUTCOMES §IF $A
GENERAL | ZAT IONS SIE $A
MAIN 1DEA SIF SA
TOPIC SENTENCES 20 $4
CLASSIFY ING SIE 36
COMPAR| SON §IF SE
ANALOGIES SID $6 —aiilikm= TN

b v
i mul LALLERRRARRRRARRRRRANR ll.l.llll.l]m[l

LR R R

COMPUTIST No. 35 9

Softkey for...

i-Res

by William Hinger

On-Line Systems

Requirements:
Hi-Res Cribbage
A blank disk

This game was released in 1980, and at that
time there were a few holdouts who were still
using DOS 3.2 in their machines. It is not
surprising, therefore, that the disk was released
in 13-sector format with a special boot sector
for DOS 3.3 systems. In fact, the disk has a
completely normal DOS, and if you interrupt
the loading process with a . you can
catalog the disk and snoop through all the files
there.

If you load and list the Applesoft file named
CRIBBAGE, you will see that it first loads and
runs a binary file named HIRES. This file turns
on the hi-res graphics and draws the title page.
This file is not necessary as it is later completely
overwritten when the next file is loaded.

A binary file named BCRIBBAGE is then
loaded at address $DOO with a length of $7FFF,
which means that it extends in memory to
$8CFF. (Locations $AA72 and $AA73 in DOS
contain the start address of the most recently
loaded binary file, and locations $AA60 and
$AA61 contain the length of the most recently
loaded program or file.)

Then a binary file called EXTRA is loaded
at $8D00 with a length of $600. They obviously
could have made these one file with a simple
patch to the save length parameter in DOS
(A964:FF lets you BSAVE more than 32K at
a time), but they didn’t.

The last file loaded is a binary file named IF
which is loaded at $300 with a length of $A.

After a couple of pokes, this file is called and
starts the program. The first instruction in this
file is a JSR $7D64. This routine simply clears
all memory between $800 and SCFF to zeros.
The next instruction, JSR $8700, is the one
which prints the menu and executes the
program.

Now, what we would like to do is save these
files as one binary file which we can FID to
another disk and execute with a BRUN. This
will work as long as we have the original disk
in the drive. But if we have transferred the files
to another disk with a file transfer utility (such
as MUFFIN to transfer the files to a 16 sector
disk), the program will try to access the disk
and die a fast death in‘the middle of the menu.
So we need to look a little further.

If you look at the routine which starts at
$8700, you can see that it repeats a cycle where
it sets VTAB and CH and then calls a routine
(at $7F27) which prints a line to the screen. This
continues until just before it would print menu
choice 5. Then instead of a JSR to $7F27, there
is a JSR to $8FEQ. This is the protection
routine, such as it is. It first does a call to a
subroutine at $8F00 which unscrambles the
code at $9000, calls the code at $9000,
rescrambles the code at $9000 with another call
to $8F00, and then finally modifies its own code
so that the next time the menu is printed, the
call to $8FEQ encounters a JSR $7F27 and RTS.

Examination of the code at $9000 will show
that the program first loads track 0, sector 0
into page 3 and then track 2, sector C into page
91. Since $9100 is in the middle of the EXTRA
file, we can save this with the rest, but we need
to make arrangements to save the code at $300
inside of our file. We can do this by moving
it to $CO0 and then writing an entry routine
which will reposition this code before calling
the program.

One more point needs to be addressed here.
The menu choices which save a match and
continue a previously saved match need to be

10 COMPUTIST No. 35

eliminated. When I chose to update this
program, I wanted it to be able to execute under
either DOS 3.3 or ProDOS. These routines read
and write sectors directly to disk using direct
calls to DOS 3.2 RWTS routines, and since a
match is less important to me than just playing
the game, I chose to eliminate these routines
entirely. This involved changing some of the
ASCII in page $80 (memory $8000) so that
these choices no longer show up, and then
changing the program so that it will not accept
these choices. This is where most of the code
you will need to enter to unprotect this program
will be placed.

I then wrote a short routine which moved the
code to page 3, set the graphics display, set $4A
and $4B in zero page to the values originally
set by the Applesoft program, and then jumped
to $300 to start the program. After saving the
code as a binary file, I tried running it.
Voila! When I ran the program, it looked
great and ran fine on my old Apple][. But
before considering the task to be complete, I
usually try it on the kids’ //c also. Good thing
I did. The program died.

Now the only thing that I could think of that
would allow the program to run on my antique,
yet would not allow it to run on the new //c
would normally involve direct calls to a part
of the monitor ROM which was changed during
the various incarnations of the Apple |[family.
So I traced through about 10 routines to find
what I thought I was looking for. The culprit
was found at $7E54 and started with an LDA
$EQ06. This was used as an ID byte to
determine what flavor of BASIC was resident.
In my old machine, Applesoft would return $00
and Integer would return $85. Since I do have
Applesoft ROMs in the machine, this would
return a $00 and all would be fine. But $E006
on the //c would return a $89 and the program
would mistake this for Integer BASIC and die.
Since I would always be running the program
on a machine containing Applesoft, I disabled

- Cribbage

the choice by having the routine load $00 into
the accumulator instead of loading an ID byte.
It now worked fine on both of my machines.
If by chance you are still using an Apple][with
the Integer ROMs, you need to skip the step
which changes the code at $7E54. The step by
step process follows, so do and enjoy!

Step by Step

1) Initialize a blank DOS 3.3 disk with an empty
HELLO program:

NEW

INIT HELLO

2) Insert your original Cribbage disk and boot it:
PR#6

3) When the program has displayed the entire
menu and the disk drive has quit spinning,
interrupt the program by pressing Reset.

4) Enter the monitor:
CALL -151

5) Protect page 3 of memory from the boot:
C00<300.3FFM

6) Now boot the slave disk you created in step 1:
6P

) Modify the menu to delete the SAVE
MATCH and CONTINUE MATCH options:
CALL -151
8088:CF D0 C5 D2 C1 D4 C9 CE
8090:C7 A0 C9 CE D3 D4 D2 D5
8098:C3 D4 C9 CF CE D3 A0 A0
80A0:A0 8D B3 A0 AD A0 C5 CE
80A8:C4 AD A0 A0 AD AOD A0 AQ
80B0:A0 AQ AG A0 A0 AO AO A0
80B8:A0 A0 A0 A@ 8D A0 A0 A0
80C0:A0 AD AD AD AD AD AD AD
80C8:A0 A0 A0 A0 AD AG AG AD

80D0:A0 A0 A0 A0 AD AD AQ 8D
80D8:A0 A0 A0 A0 A0 A0 A0 8D

8) Delete the jump to the protection routine:
87BA:27 7F

9) Modify the choice subroutine to reflect the
new menu:

87C4:B4
87E0:FF
87E7:FF
87EE:02
8808:BF 9D

10) Enter a short startup routine:

BC0:8D 50 C0 8D 52 Co0 8D 54
BC8:C0 8D 57 C0 A9 0C 85 00
BDO:85 01 85 02 C6 00 DO FC

N

BD8:C6 01 DO F8 C6 02 DO F4
BE0:A2 60 BD 00 6C 9D 00 03
BES8:CA DO F7 A9 00 85 4A A9
BF0:08 85 4B 4C 00 03 00 00

11) If your machine is a][Plus or newer, or
if you have replaced the Integer ROMs in your
][with FP BASIC ROMs, make the following
change:

TES4:EA A9 00
12) Save the new file:

A964:FF
3DOG
BSAVE CRIBBAGE,A$BC0,L$8740

That’s all there is to it. This 138 sector binary
file can be moved using FID from your DOS
3.3 System Master. i

COUNT= 20

VR)

ﬂnmnnmn

PAIR-7
PAIR-2

COMPUTIST No. 35 11

softkey for...

Olympic

by Marc Lirette

Microsoft Corp.
10700 Northop Way
POB 97200

Bellevue, WA 98009

Requirements:

Super IOB v1.5

Apple [Plus or equivalent

One disk drive (two are preferred)

After several attempts at trying to unprotect
my Olympic Decathlon disk I was only able to
unprotect it last week. The main reason why
I couldn’t unprotect Olympic Decathlon was
because is uses an old system of storing the
information on the disk. After boot tracing and
examining the read routine. I noticed that the
tracks on the disk were written with 4 & 4
encoding. Standard DOS 3.3 and ProDOS uses

(P88

6 & 2 encoding. Refer to Beneath Apple DOS
or ProDOS by Don Worth and Peter Lechner
for a discussion of 4 & 4 encoding versus 6 & 2.

Because the disk uses 4 & 4 encoding. it can
only store 11 sectors per track.

The method of unprotecting the disk is to first
tranfer the disk to a DOS 3.3 format (6 & 2
encoding) and then change its read routine to
use RWTS instead of reading 4 & 4. First I used
the good old boot trace to capture the Olympic
Decathlon read routine. Then I wrote a Super
IOB v1.5 controller that uses the Olympic
Decathlon’s own read routine and normal DOS
for writes. The resulting disk would not boot.

After examining the boot process of the
original disk some more I decided that I would
have to write my own loader routine and modify
the read routine on the copy of Olympic
Decathlon to use standard RWTS. So after some
revisions to my controller and the creation of
my LOADER file, it worked!

The Cook Book

1) Key in the LOADER hexdump and the super
IOB controller using the instructions on the

4 Olympic

Decathlon #

12 COMPUTIST No. 35

inside front cover of this magazine and save
them with:

BSAVE LOADER,A$9000,L.$6D
SAVE CON.OLYMPIC

2) We will now boot code trace your original
Olympic Decathlon disk to capture its read
routine. First write protect your original and
enter the monitor.

CALL-151

3) Cpoy the disk controller card ROM in slot
6 to RAM.

9600<C600.C6OFFM

4) Change this relocated boot ROM to put us
into the monitor instead of executing the next
stage of the boot.

96F8:4C 59 FF

5) Execute this modified Boot @ and turn off
the drive.

9600G
COES

6) The disk drive will start up and clank. The
cursor will then reappear. Now track 0, sector
0 is loaded into memory. Change Boot | at
$0800 to put us into the monitor instead of
executing Boot 2.

826:4C 59 FF

$9800 and exccute Boot | at $0800.

9659:98
96K8:4C 01 08

8) Execute Boot 0 and 1 and turn off the drive.

9600G

COES
9) Now Boot 2 is loaded into memory. This is
Olympic’s read routine. Boot your Super IOB
disk and save this read routine.

C600G

BSAVE RWTS.OLYMPIC ,A$8900,L$900

10) We will now create a slightly modified boot
strap code to load in Olympic Decathlon. Enter

Decathlon

the monitor and move the boot strap code to
$3600.

CALL -151
3600<B600.BFFFM

11) Make the following modifications to this
code so that it will load Olympic Decathlon
correctly.

36FE:B6

3715:01

371A:0F

373F:81 CO 20 93 FE
3748:00 89

37A0:C0 0A DO 05 A0 OF
37AC:EE

37E0:09

37E7:8A

37EB:00

37F0:00

12) Return to Applesoft and save this modified
boot strap to your Super IOB disk.

OC
BSAVE RWTS.NORMAL ,A$3600,L$A00

13) Use the Super IOB controller to copy
Olympic Decathlon. Note that after track $22
is written, you will be asked to insert your Super
IOB disk. This is so the controller can BLOAD
the files you just created and write them to your
deprotected copy.

LOADER
9000: A5 0C 4A 8D EC B7 A5 @D $18DD
9008: 8D ED B7 A5 08 8D F1 B7 $DB8F
9010: A9 00 8D F@ B7 A5 03 85 $53AB
9018: 02 E6 @3 EE F1 B7 EE ED $04DC
9020 B7 AD ED B7 C9 0B D@ 08 $980D
9028: A9 0@ 8D ED B7 EE EC B7 $9F92
9030: C6 @2 A5 @2 DO E5 AD EC $73A4
9038: B7 85 05 AD ED B7 85 @6 $D544
9040: A9 01 8D F4 B7 A9 B7 AQ $8FAQ
9048: E8 20 B5 B7 AC ED B7 88 $76Bl
9050 10 05 A@ 0A CE EC B7 8C $B7E7
9058: ED B7 CE F1 B7 C6 @3 A5 $47D2
9060: 03 DB E2 A5 05 QA 85 OC $B8BC
9068: A5 (06 85 0D 60 $5BE7

controller

1000 REM OLYMPIC DECATHLON

1010 FORA=936TO 960 : READ X : POKE A , X : NEXT

1020 TK=1:ST=10:LT=35:LS=10 :CD=WR : POKE
900 .10 : POKE 997 206 : POKE 916 144

1030 GOSUB 490 : POKE 955 , TK = 2 : POKE 941 .22
+66 % (TK <33) : CALL 936

1040 IF TK=9 THENFORA =91 T0 93 : POKE 10752
+A 234 : NEXT : POKE 10850 .0

1050 GOSUB 490 : FORA=0TO 7 : POKEBUF ,49 + 11
* A:MB=39 +11 = A

1060 GOSUB 610 :TK=TK+ 1 : IF TK < LT THEN NEXT
: GOTO 1030

1070 A$ =CHRS (7) + " INSERT* SUPER® 10B* DISK"
- GOSUB 470 : HOME : PRINT

1080 PRINT CHRS 4)
RWTS.OLYMPIC,A$2700"
"BLOAD* LOADER ., A$2E0Q"

1090 PRINT CHRS$ (4)
RWTS .NORMAL ,A$3000"

1100 AS = " INSERT* TARGET® DISK* IN® DRIVE® " +
STRS (D2) : GOSUB 470 : HOME

1110ST=9 :TK=0 : POKEBUF .57 :MB =48 : GOSUB
610 : POKE 907 .238

"BLOAD®
: PRINT CHRS (4)

"BLOAD®

o YOUuR

1120 POKE 916 .176 :ST =15 : POKE BUF .44 :MB =
48 : GOSUB 610 :TK =1 : POKE BUF .39 :MB =
44 : GOSUB 610

1130 HOME : PRINT "THAT'S® ALL® FOLKS!" : END

5000 DATA 169 .96 .133 .11 169 .77 .133 .3 .169
.39 .133

5010 DATA8 .169 .0 .133 .7 .133 .13 .169 .0 .133
12,76 .0 (144

10010 PRINT CHRS (4) "BLOAD® RWTS.OLYMPIC"

controller checksums

1000 - $356B 1099 - SDE25
1010 - SEC74 1100 - $643E
1020 - SF8OE 1110 - $@35A
1030 - SEAA7 1120 - S$24A3
1040 - $5610 1130 - $4697
1050 - sSDCo4 5000 - SE913
1060 - SFBOF 5010 - SA9BE
1070 - SEB857 10010 - SCDE4
1080 - $730A

MARKS

o o s s

COMPUTIST No. 35 13

revisiting...

F-15

by Jim Wallace

MicroProse
120 Lakefront Drive
Hunt Valley, MD 21030

Requirements:

A blank disk

Super IOB 1.5

Sector editor (optional)

A copy program which will copy specific tracks
(optional)

As Michael Ferreira and Ken Burnell (Input.
COMPUTIST Nos. 28 and 29) indicate, there
are other versions of F-15 Strike Eagle released
which are different from Larry Jasonowicz's
(COMPUTIST No. 24). I also tried Larry’s
softkey procedure with no success. His article
was helpful, however, in softkeying the F-15
I have. Perhaps some of my findings will help
in softkeying still other versions.

A quick check of the disk using CIA revealed
a normal DOS 3.3 format except track $22
which appeared to be empty anyway. So I made
a copy of F-15, tracks $00 through $21. I used
this copy during my investigation and used the
original for the final softkey.

I decided to look for a catalog track, whose
location is usually indicated in normal DOS 3.3
on track $01, sector $0B, byte $01. Finding the
value $15, I initialized a blank disk with DOS

3.3, used a sector editor to change byte $01 of

sector $0B, track $01, to $15 and then rebooted
this disk. The F-15 copy could then be
CATALOGed and the files loaded.

I was interested in examining any file which
loaded into page $02, assuming that the
protection would at least be similar to Larry’s
version. The file “*AS"’, located on track $10,
sectors $OC and $0D, loaded into page $02.

After loading it. I found that it also stored $CO
at $0201 if a copy of the disk is detected and
$DB if no error is encountered. To defeat this
check, I simply changed the $CO to $DB (two
locations (track $10, sector $OC, bytes $90 and
$9E) on the copy of F-15 which I had just
made).

Having made these changes, the game would
progress up to the point of requesting you to
enter a code number (explained in the F-15
manual). After the code was entered, the
program bombed with a ‘*HARDWARE
FAILURE!"" message. Noticing that disk access
occurred after the code was entered, I suspected
a nibble count or some unique signature on that
problem track $22. So I rebooted and
interrupted the process with a modified ROM
(see previous issues of COMPUTIST) to search
for disk access code (some reference to location
$CO8C). This led me to the actual nibble count
subroutine located from $5303 through $.,37B.
(I later checked the catalog and found file
““*SCN.DTA’’ loaded into pages $50 through
$53. However, don’t bother trying to load and
read it (it’s encoded and gets Exclusive-ORed
after loading to reveal sensible data)).
Backtracking, I found the process begins at
$5000. Without any further analysis of the code,
I simply gave it a shot of **18 60" (encoded,
of course) to indicate ‘‘no errors found'’ and
return to the caller. No luck. Apparently there
was something the subroutine generated which
the caller looked for upon return.

Looking through the routine, I found a couple
of places where $21 is loaded and then the
program jumps to what appeared to be its own
SEEK subroutine (to move the disk arm to a
specific track. See COMPUTIST No. 22, Super
IOB 1.5 *‘Half-Tracks’® for more on this
subject).

$5000- 18 CLC
$5001- 90 0OF BCC $5012
$5003- 9A i,
$5004- 96 21

$5006~ 01 60

i4 COMPUTIST No. 35

$5008- D5 AA
$500A- 96 DE
$500C- AA
$500D- D5 AA
$500F- AD DE AA

$5142- AD 05 00 LDA $5005
$5145- 20 89 52 JSR $5289
$5148- AD 05 50 LDA $5005
$514B- 20 9B 51 JSR $5198B
$514E- 20 7E 51 JSR $517E

When a program uses a SEEK subroutine,
9.5 times out of 10 (decimal--not hex) it’s using
half-tracks. A quick check of the original disk
revealed a fully formatted track $21.5 with
seemingly empty sectors. As a matter of fact.
tracks $21, $21.5, and $22 appear identical--
and I do mean identical! Track $22 is formatted
with a track ID of $21!

After locating these tracks, the actual nibble
count subroutine counts a specific number of

bytes, then looks for a “"'9A 96 xx DE AA™
sequence.

$532A- AD 54 LDY #$54
$532C- A9 00 LDA #3500
$532E- BD 8C C@ LDA $C@8C.X
$5331- 10 FB BPL $532E
... Read $54 + S$FF bytes:
$5333- EA NOP

$5334- 88 DEY

$5335- DO F7 BNE $532E
$5337- BD 8C C@ LDA $C@8C.X
$533A- 10 FB BPL $5337
$533C- EA NOP

$533D- C8 INY

$533E- DO F7 BNE $5337
$5340- BD 8C CO LDA $C@8C.X
$5343- 10 FB BPL $5340
$5345- A4 2A LDY $2A
$5347- DO 05 BNE $534E
$5349- CD 03 50 CMP $5003
$534C- DO 2C BNE $537A
$534E- BD 8C CO LDA $C@8C.X
$5351- 10 FB BPL $534E

Strike Eagle

$5353- A4 2A LDY $2A
$5355- DO 05 BNE $535C
$5357- CD 04 05 CMP $5004

... Read and compare the next five
bytes to "9A 96 xx DE AA":

$535A- DO 1E BNE $537A

$535C- BD 8C CO LDA C@8C,X
$535F- 10 FB BPL $535C

$5361- EA NOP

$5362- EA NOP

$5363- EA NOP

$5364- BD 8C CO LDA C@8C.X
$5367- 10 FB BPL $5364

$5369- CD 10 50 CMP $5010

$536C- DO 0C BNE $537A
$536E- BD 8C C@ LDA $CO8C
$5371- 10 FB BPL $536E
$5373- CD 11 50 CMP $5011

$5376- DO 02 BNE $537A
$5378- 18 CLC
$5379- 60 RTS
$537A- 38 SEC
$537B- 60 RTS

Hmmmm. The DE AA is the epilog of a
normal DOS 3.3 sector. Checking the sectors
on these tracks again with CIA Linguist
revealed the “*9A 96 9A DE AA’’ at the end
of the sector $00 on each of these similar tracks.
It’s easily overlooked in the sea of **96's™
unless you're looking for it.

Well, if I couldn’t ignore the whole disk
check routine, at least I could skip the actual
nibble count. At $5151 the program branches
to $5S1EE if a good nibble count has occurred
and steps are executed to indicate no error. The
sole indication of no error is that the A register
must contain $00 when returning to the caller.
The remaining code between $5165 through
$517A will set up other conditions needed upon
return whether an error was detected or not.

With this information, I decided to change
the code on page $51 as needed to skip the
actual nibble count. As mentioned earlier. this

routine is encoded on the disk. Each page of

the routine must be EOR'ed with a different
value for decoding. In case any of you want to

experiment further, they are listed below.
CAUTION: The bytes you see in RAM are
offset by a factor of +4 when using your sector
editor. For example, when you read in page $50
from track $OC, sector $07, byte $5020 that you
see in RAM will be byte number $24 of your
sector editor--not byte number $20. When DOS
3.3 stores binary files to the disk, it precedes
the actual data with a two-byte address and a
two-byte length. This **moves’’ the rest of the
data four bytes down the file.

Page Value
$50 $AS
$51 $75
$52 $39
$53 $6E

(One item I didn’t follow through on was
figuring out why immediately after decoding,
page numbers in the code are $60 through $63,
then changed to $50 through $53 prior to
execution. Another Caution: Take heed. ye who
want to experiment further!)

Making The Copy

The sector editor method for making a F-15
backup is faster. Nearly everyone has a sector
editor, but for anyone who does not, use the
Super IOB method described later.

1) Copy the F-15 disk, tracks $00 through $21.
or, if you can't specify tracks, ignore errors on
track $22.

2) Use your sector editor to make the following
changes:

Track Sector Byte From To

$60 $37 $93

$10 soC $90 $CO sDB
SOE $CO sDB

3) Be sure to write each sector back after

making the changes.
The Super IOB Method

1) Initialize a blank disk with DOS 3.3.

2) Install the F-15 controller at the end of the
article into Super IOB and use it to copy tracks
$00 through $21 of the original disk. Super IOB
will make the necessary sector edits on tracks
$0C and $10.

controller

1000 REM F-15 STRIKE EAGLE CONT.

1010TK=0 :LT=34 :ST=15:LS=15 :CD=WR : FAST
=1

1020 GOSUB 490 : GOSUB610 : T1=TK : TK=PEEK (TRK
) -1 : RESTORE : GOSUB 310 :TK = T1

1030 GOSUB 490 : GOSUB 610 : IF PEEK (TRK) = LT
THEN 1050

1040 TK = PEEK (TRK) : ST =PEEK (SCT) : GOTO 1020

1050 HOME : PRINT "DONE." : END

5000 DATA 11° CHANGES

5010 DATA 12 .6 49 .57 .12 .6 .50 .45
5020 DATA 12 .6 ,51 .20 .12 .6 .92 109
5030 DATA 12 .6 .93 .220 .12 .6 .94 /110
5040 DATA 12 .6 .95 .248 /12 .6 .96 147
5050 DATA 12 .6 .97 .20 .16 .12 . 144 .219
5060 DATA 16 .12 ,158 .219

controller checksums

1000 - $3568 5010 - S$OESE
1010 - $0715 5020 - $6508
1020 - SCE56 5030 - SD7AB
1030 - $7CE8 5040 - S1CA8
1040 - sDICC 5050 - $3F5D
1050 - $33EF 5060 - $8768
5000 - SE34A

I

COMPUTIST No. 35 15

)

Exploring ProDOS by Installing a...

CPS Clock Driver

by Paul Blumstein

If you own a Mountain Computer CPS clock
card, this article will show you how you can
use it as a ProDOS compatible clock. If you
do not have a CPS clock, this article will
provide you with insight into some of the inner
workings of ProDOS that you will find useful
to you whether you wish to write assembly
language programs or as a starting point for
further exploration. We shall explore ProDOS’s
Machine Language Interface and its Global
Pages and we will discover how a system
program is called and relocated.

Background

About four years ago, Mountain Computer
Incorporated revolutionized the Apple
compatible peripheral card industry by
introducing the **CPS Multifunction Card.™”
This card contained a bi-directional serial
interface. a parallel interface and a
clock/calendar. Its name, CPS, stands for its
three functions: Clock, Parallel and Serial. This
card was popular for two years until ProDOS
arrived, making the clock function of little
value. Many people still are using these cards
to drive their modem or printer or both.

Why A Clock?

An excellent reason for owning a ProDOS
compatible clock is that ProDOS will
automatically place the date and time in
directory entries. That information tells you
when cach file was first created and when it was

last modified. Have you ever had two or more
files with the same name on two different disks
and wondered which one was the latest version?
Or have you ever needed to know whether your
backup files were current? Having a clock
solves these problems.

Another good reason to own a clock is that
some applications will use your clock to make
your life a little easier. For example, Apple’s
AppleWorks program initially prompts you for
a date. If you have a clock, it defaults to the
current date. If you don’t have a clock, then
it defaults to the last time you manually ente red
a date. Without a clock, this means that you will
have to re-enter a new date every time you boot
on a different day. With a clock, AppleWorks
will also display the time that your files were
last updated in addition to the date.

Word Juggler, a word processor by Quark
Incorporated, is another good example. It has
functions that automatically print the date and
time on your documents. When you use these
functions without a clock, you must manually
enter the date and time each time you boot.
When you do this, the time never changes.
More and more ProDOS applications are being
written to make use of a clock.

It is especially frustrating when you have a
clock inside your computer that you can’t use.
This frustration led me to create a clock driver
that would access a CPS clock and fool ProDOS
into thinking that I had a ProDOS compatible
clock. By the way. you probably have noticed
the name Thunderclock mentioned in ProDOS-
related literature. That is because Apple
designed ProDOS to be compatible with the
Thunderclock clock card made by
Thunderware. Inc. All of the clock cards since

16 COMPUTIST No. 35

that time have been designed to be

Thunderclock compatible.

How a Program Accesses the Date

The creators of ProDOS decided to create
subroutines that could be accessed in a way that
would be compatible across future versions.
One of the problems with DOS 3.3 was that
programmers accessed its subroutines directly.
That meant that Apple could not make any real
modifications to DOS since everyone expected
that everything would always be in the same
place. ProDOS takes two steps to solve this
problem: the Machine Language Interface
(MLI), and Global Pages.

The MLI is a subroutine that has only one
entry location: $BF0@. An assembly language
programmer executes a JSR instruction (similar
to a BASIC GOSUB or CALL statement) to this
location and passes parameters indicating what
he would like ProDOS to do for him. For
example, each of the ProDOS commands (like
OPEN) have equivalent MLI calls. There are
additional system functions that are only
available through the MLI. The MLI call to get
the system date and time (called GET_TIME).
which we are about to explore, is one example
of this.

The System Global Page is page 3$BF
(locations $BFQQ through $BFFF). This page
contains values, such as file buffer addresses.
and JMP (jump) instructions (which are
equivalent to BASIC's GOTO statements).
These instructions jump to various areas of
ProDOS. The BASIC Interpreter (which is the
interface between ProDOS and Applesoft) also
has a Global Page (page $BE). By having fixed
locations on these Global Pages. both ProDOS

and the BASIC Interpreter can come out with
new versions without and any program that does
not violate the rules will not be affected. New
versions of ProDOS and the BASIC Interpreter
merely change the values stored in these
locations, but the locations, themselves, never
change. If you are interested in more details on
the MLI and these Global Pages. I recommend
Beneath Apple ProDOS by Don Worth and
Picter Lechner (Brady Communications. Inc..
1985, $19.95).

That brings us to the clock. When any
ProDOS program wishes to retrieve the date
and/or time, it does it by issuing an MLI call
(JSR $BF00). By convention, this call is
followed by a one byte function code and a two
byte address that points to the location of a
parameter list. When ProDOS is done with the
call, program execution continues at the address
immediately following the three bytes. The
GET__TIME function code is $82. Since this
call does not have any parameters, the two byte
address after the function code has a value of
zero. The assembly language code to get the
system date and time is simply:

JSR $BFOQ call the MLI

HS 82 GET.TIME code

.HS 0000 address of parmlist
LDA. .. continue program

ProDOS responds by placing the current date
and time, in binary. in locations $BF90 through
$BF93. The time is stored in a 24-hour clock
format with hours placed in location $BF93 and
minutes placed in location $BF92. The date is
more complex. The 5 right-most bits (known
as the Least Significant Bits or LSBs) of location
$BF90 contain the day of the month. Since we
number bits from @ (on the right) to 7 (on the
left), this would be bits @ through 4. The
number of years since 1900 (i.e., 1986=86)
occupy bits 1 through 7 of location $BF91. That
lcaves bits 5 through 7 of $BF90 to contain the
LSBs of the month and bit @ of $BF91 to contain
the Most Significant Bit (MSB) of the month.

Confused? Let's try an example using
September 15. 1986 as today's date and 11:45
pm as the current time and figure out how this
is stored (see Table 1). If you were to examine
locations $BF90 and $BF91 with the monitor,
you would see that it contains the values $2F
and $AD, respectively, which is consistent with
the bit pattern above. If the system doesn’t
contain a compatible clock, the values at these
locations do not change. They are initially zero
and are changed whenever you **set the clock™".
That is why you can set a non-existent clock
and retricve the non-changing date and time
until you re-boot.

The Clock Driver

Since different ProDOS versions can have the
clock driver code in different locations, it needs
a way of knowing where the driver currently
is. Remember the Global Page? Locations
$BF0Q7 and $BF08 contain the current address
of the clock driver. (Always remember that an
address has the low-value byte first). When
ProDOS first boots, it looks for a compatible
clock. If it finds one, it does two things. First,

it places a $4C (JMP instruction) at location
$BF06. Then it modifics the driver so that the
clock addresses within the driver point to the
correct slot. If a compatible clock isn’t found.
it places a $60 (RTS instruction) at SBF06
instead.

When a program (or ProDOS itsclf) calls the
MLI (at $BF00) to retricve the date, it uscs a
function code of $82. This tells it that it nceds
to execute the clock driver code. The MLI now
does a JSR (Jump to SubRoutine) to $BF06. If
a clock isn't present, the RTS (ReTurn from
Subroutine) instruction is executed and
execution passes back to the MLI. If a clock
is present, then the JMP (JuMP) instruction
directs the processor to the driver code. The
driver code accesses the clock, fills in locations
$BF90 through $BF93. and performs an RTS
which passes exccution back to the MLI. The
MLI then returns to the program.

Solving the Big Problem

Those of you that have a CPS Clock realize
that ProDOS doesn’t recognize it. Even if it
thought that the clock was compatible. the
driver wouldn't work. That means that we must
derive a way to fool ProDOS into thinking that
we have a compatible clock and make it use a
different driver. The problem wouldn’t be too
hard to solve if we were only going to use the
clock for our own applications. In that case, all
we would need to do is BLOAD our own driver
into a location that know we is safe and change
locations $BF@6 through $BF08 to be a JMP
to our driver. Then, anytime ProDOS or our
programs nceded the time. it would usc our
driver to access our clock and everything would
work just fine.

But, we also want our store-bought programs
to use the clock. This is tricky for two reasons.
First, we never know what parts of memory the
application will use, perhaps all of it. Second.
most applications do not have a BASIC
Interpreter and do not allow us to leave the
application itself.

There is a solution! After ProDOS boots, it
checks the catalog for the first system program
with a name ending with **.SYSTEM"". By the
way, a system program is one whose file type
is *SYS™". It is always a binary file that will
run at $2000. At the end of the boot, ProDOS
loads this program and passes execution to it
with the JMP command. On our ProDOS
User's Disk, this program is called
BASIC.SYSTEM. On an application program,
it could be called anything. The solution is to
rename the .SYSTEM program so that ProDOS
won't find it and will find our own program,
CLOCK.SYSTEM, instead.

CLOCK.SYSTEM contains our homebrew
clock driver and code to install it. The
installation code first changes the RTS
instruction at $BF06 to be a JMP instruction
so that ProDOS knows that a clock exists. Next.
it changes all of the absolute addresses within
the driver to be consistent with where we are
going to move it. Then, it relocates the driver
to the only safe place that we can move it: over
the area where the old driver was.

The final thing that we will do is exccute the
system program that would normally be
exccuted right after ProDOS booted: the one
we renamed. This gets more complex.
CLOCK.SYSTEM would have to relocate itself
somewhere clse since the other system program
also executes at $2000 and we would overwrite
ourselves if we loaded it. Also. BLOAD and
BRUN aren’t currently available for us to use.
That would mean that we would have to write
code to manually search the catalog and
manually load it. All of this could be done. but
would require a lot of extra work.

Luckily. there is an casier solution. ProDOS
contains a section of code called QUIT which
is accessed through the MLI. The QUIT code
is designed to be used at the end of a system
program to let ‘the computer user execute
another system program. By letting ProDOS do
the work, we can save ourselves a lot of trouble.
There is one problem though. The QUIT code
requires you to enter the name of the next
system program that you want to execute. That
means a few extra keystrokes everytime you
boot. Whenever I rename the .SYSTEM
program, I call it "GO"". That cuts down on
the number of keystrokes. Also. by always
using the same name. I do not have to remember
what I called it on each disk.

A Guided Tour

The source code listing puts into practice
everything that we have talked about. Most
people place their CPS Cards into either slot
1 or 2. This listing is assembled for slot 2. If
your card is in siot 1 (or any other slot, for that
matter) a few minor changes are needed. If you
are using an assembler. simply change the
*SLOT .EQ 2™ in the source code listing (next
page) from a 2 to a | (or whatever the slot
number is) and everything will assemble
correctly. If you are going to type the program
in through the monitor. change the $C2 to SC1
(or C followed by the slot number) at the
following hex locations: 205E. 209D. 20A4.
20A7, 20BA. and 20BD.

Since this is a system program. it must reside
at address $2000. The driver code follows the
instailation code which is executed at boot time.

There are several ways to access the clock
through assembly language. I chose the most
direct method. which bypasses the built-in
ROM program on the card and accesses the
clock directly. The clock is accessed by writing
commands to its address location and reading
data from (or writing data to) its data location.
These locations are $SCxXxFE and $CxF9.
respectively. where x is the slot number.

Since time is always moving. we must hold
the clock briefly while we read it. If we didn’t
and it was, say. 2:59. we may retrieve the
minutes and the clock may then become 3:00
just before we get the hours. We would then
think that the time was 3:59. This hold function
is performed at $205A and after completion,
the clock is released at $2099. The rest of the
program gets each part of the date that it nceds
and stores it at the previously mentioned
locations.

COMPUTIST No. 35 17

|

L The RDCLK subroutine retricves the tens

:"i place of cach ficld. multiplies it by ten. then
! retrieves the ones place and adds it to the tens

.i place. The multiplication is done by shifting two

Table 1: Time/Date Storage

1 pldCCS to the left. dddmg back in the original FIELD DECIMAL HEX ¢ BITS BINARY COMMENT

{ number and shifting the result one place to the

| left. For example. if we are working on the Month 9 9 4 1001 see below
minutes field and it is now 2:59. we will retricve
a 5 for the tens place. Shifting to the left is the Day 15 F 5 p1111 see below
equivalent of multiplying by two since we have
a binary machine. The first shift turns the 5 into Year 86 56 7 1010119 see below
a 10 (SA). The sccond shift turns it into a 20
(S14). Adding back in the original number. 5. Hour 23 17 8 00010111 Placed at SBF93
gives us 25 (S19) and the last shift turns this Minute 45 20 8 00101101 Placed at $BF92

into a 50 (532).
<----$BF91----> <----$BF9@----> ADDRESS

We then retrieve the ones position. which is 7654321076543210 BITH
2 9. and add it to the 50 to give us 59 ($3B).- 1910116100161 111 BIT VALUE
Each value that we retrieve is returned from the <---YEAR----> <-MON-> <--DAY--> FIELD NAME

clock in the rightmost nibble. except for the tens
place of hours. where we only need the two

LSBs. In that case we perform an AND
instruction to mask out those bits.

Source Code For CLOCK.SYSTEM

The installation code changes SBF06 to be

a JuMP instruction and then calculates where * CLOCK.SYSTEM -- USE THE MCS CLOCK WITH PRODOS
RDCLK will reside after relocation. It then * REMEMBER TO RENAME THE ORIGINAL .SYSTEM FILE
:} changes cach of the JSRs to RDCLK in the £ P. BLUMSTEIN -- 1/86
' driver so that they will point to its new location. OR $2000
, The next step is to bank in the language card P03A- TENS .EQ $3A KEEP A WORKSPACE LOC

RAM and overlay the new clock driver on top 0010- READ EQ $10 CLOCK READ COMMAND

of the old driver. Finally. the installation code 0002- SLOT Q2

calls QUIT through the MLI (at $204C). C2FE- CLKADR .EQ SLOT * $100+SCOFE

C2F9- CLKDATA .EQ SLOT : $100+3COF9

Installing Our Masterpiece 003A- TEMP .EQ $3A
BFOO- MLI .EQ $BFO0 MLI ENTRY POINT
Either type in the machine code through the START
monitor or type in the assembly code (this is 2000: A9 4C LDA #$4C SETUP GLOBAL JUMP
in S-C Assembler format). If you use an 2002: 8D 06 BF STA $BFO6
assembler under DOS 3.3 simply convert the 2005: 18 CLC
resultant binary file with the ProDOS 2006: AD @7 BF LDA $BF@7 CALC ADDRESS OF RDCLK
CONVERT Utility. To make life simpler, call 2009 69 46 ADC #RDCLK-CLKSTART
your program somcthing other than 2008B: 85 3A ! STA TEMP
CLOCK.SYSTEM (such as CPS.DRIVER) 200D: AD 98 BF LDA $SBF@E
because it is not yet a system program. 2010: 69 00 ADC #9
(ProDOS won't let you BLOAD a system 2012: 8D 63 20 STA JSR1+2 SET UP RELOC INFO
program so you would want to keep a binary 2015: 8D 6E 20 STA JSR2+2
version of it around for future use). Put your 2018 8D 77 20 STA JSR3+2
program onto your ProDOS User’s Disk and 201B: 8D 7F 20 STA JSR4+2
place your target disk into drive 2. (You can 201E: 8D 92 20 STA JSR5+2
also do this with one drive). Rename the current 2021 A5 3A LDA TEMP
.SYSTEM program and save your program as 2023 8D 62 20 STA JSRI+41
a .SYSTEM program. For example: 2026 8D 6D 20 STA JSR2+41
1) Make a backup copy of the disk you intend 2029: 8D 76 20 STA JSR3+1
to install the clock driver on. Put away the 202C: 8D 7E 20 STA JSR4+1
original. NEVER modify your original disk. 202F: 8D 91 20 STA JSR5+1
2) Boot ProDOS and cnter BASIC. 2032: AD 07 BF LDA $BF@7
3) Enter the monitor with CALL -151 and type ggg;’ ig gg BF E[T)ﬁ ;EEZB
in the hexdump (if you don’t assemble it). 2®3A: 85 38 STA TEMPs1
4) Save the program to disk. 203C: AD 8B CP LDA $CO8B ALLOW WRITE TO RAM
203F: AD 8B CO LDA $C@8B
BSAVE CPS.DRIVER,A$2000,L5C3 2042: AD 69 LDY HCLKEND-CLKSTART #BYTES TO MOVE-1
LOOP
5) Locate the .SYSTEM program and rename 2044: B9 59 20 LDA CLKSTART.Y OVERLAY CLOCK DRIVER
it GO 2047: 91 3A STA (TEMP).Y
2049 88 DEY

RENAME BASIC.SYSTEM,GO

18 COMPUTIST No. 35

204A:
204C:
204F:
2050:

2052:
2053:
2054
2056:
2057

2059:
205A:
205C:
205F
2061
2064
2067
2069
206C:
206F :
2072
2073
2075
2078:
2078:
207D:
2080
2081:
2082:
2083:
2084
2087:
208A:
2088B:
208E:
2090:
2093:
2096:
2099:
2098B:
209E:

209F:
20A1:
20A2:
20A5:
20A8:
20AA:

20AC:
20AE
2080
20B1:
2082
20B4:
2085
20B7:
20B8:
2088B:
20BE:
20C9:
20C2:

EXECUTE QUIT CODE

END OF DRIVER INSTALLATION CODE = s =

INDICATE # PARMS

HOLD THE CLOCK
MINUTE ADDRESS

STORE MINUTES DIRECTLY
HOURS ADDRESS

SET V FLAG...

.. .HOURS GET SPEC HANDLING

YEAR ADDRESS

STORE IT UNSHIFTED
MONTH ADDRESS

SHIFT INTO PLACE

PUT WHATS LEFT WHERE

GET THE YEAR BACK

...& STICK IN THE MONTH'S
...& PUT IT BACK

ADDRESS OF DAY

PUT THE MONTH IN & ...
...PUT IT BACK
TAKE CLOCK OFF HOLD

% % % RDCLK--ON ENTRY 'A' CONTAINS A CLOCK FIELD ADDRESS
ON EXIT 'A" CONTAINS ITS BINARY VALUE

PUT READ FLAG INTO ADDRESS
HOLD THE ADDRESS
GET TENS PLACE

SKIP THIS MASK EXCEPT..
..HOURS NEEDS 2 BITS

OTHERWISE. 1 NIBBLE

MULTIPLY BY TEN

POINT TO ONES PLACE
AND GET IT

KEEP A NIBBLE

10 F8 BPL LOOP
20 00 BF JSR ML

65 HS 65

52 20 DA PARMS
04 PARMS .HS 04

00 HS 00

00 00 HS 0000
00 HS 00

00 00 HS 0000

s % % BEGINNING OF DRIVER s s i
CLKSTART

B8 cLv

A9 40 LDA #540
8D FE C2 STA CLKADR
A9 03 LDA #3

20 9F 20 JSRL JSR RDCLK
8D 92 BF STA SBF92
A9 05 LDA #5

2C 06 BF BIT $BFO6
20 OF 20 JSR2 JSR RDCLK
8D 93 BF STA SBF93
B8 cLv

A9 0C LDA #12

20 OF 20 JSR3 JSR ROCLK
8D 91 BF STA $BF91
A9 0A LDA #10

20 OF 20 JSR4 JSR ROCLK
4A LSR

6A ROR

6A ROR

6A ROR

8D 90 BF STA $BF90
AD 91 BF LDA $BF91
2A ROL

8D 91 BF STA $BF91
A9 08 LDA #8

20 OF 20 JSR5 JSR RDCLK
0D 90 BF ORA $BF9Q
8D 90 BF STA $BF9Q
A9 00 LDA #0

8D FE C2 STA CLKADR
60 RTS

ROCLK

09 10 ORA #READ
AA TAX

8D FE C2 STA CLKADR
AD F9 C2 LDA CLKDATA
50 02 BVC NORM
29 03 AND #3
NORM

29 0OF AND #SF

85 3A STA TENS
0A ASL

0A ASL

65 3A ADC TENS
0A ASL

85 3A STA TENS
CA DEX

8E FE C2 STX CLKADR
AD F9 C2 LDA CLKDATA
29 OF AND #SF

65 3A ADC TENS
60 CLKEND RTS

6) Install the new clock driver as a .SYSTEM
file. The TSYS command tells ProDOS that the
file type we're working with is .SYS ("Type
SYStem™). This will keep ProDOS from
complaining.

BLOAD CPS.DRIVER
CREATE CLOCK.SYSTEM.TSYS,D2
BSAVE CLOCK.SYSTEM.TSYS,A$2000,L8C3

The hexdump contains the program in binary
with the checksums created by CHECKBIN.
You can run CHECKBIN under ProDOS by
using the ProDOS CONVERT Uitility to make
it a ProDOS file.

Always perform the above on a backup disk
only. never on the original. When you boot the
modified disk. it will prompt you: ENTER
PREFIX. Hit'RETURN at this point. It will
then prompt you for the program name. Type
in GO (in upper or lower case) and hit
RETURN. The program will then proceed as
it always did before. If you mistype the program
name. the QUIT code will say FILE/PATH
NOT FOUND and stop. Don’t panic. Simply
hit Reset and it returns to the ENTER PREFIX
prompt.

Advanced Improvements

Two additional features can be added to this
program. If you need to make the installation
code work with the clock in any slot, you can
add code to find the slot that your clock is
currently in. Your CPS Setup Disk has a BASIC
program called CPS SLOT FINDER that can
easily be converted to assembly language. To
see this program. boot the Setup disk, quit into
BASIC. type in NEW. then EXEC CPS SLOT
FINDER and LIST.

If you do not like to type GO every time you
boot. you can add code to relocate the
installation code. load the GO program at
location $2000 and JMP to it. Personally. I find
both of these features more trouble than they
are worth.

CLOCK.SYSTEM Hexdump

. 2000: A9 4C 8D 06 BF 18 AD 07 SC6BE
2008: BF 69 46 85 3A AD 08 BF $3DAE
2010: 69 00 8D 63 20 8D 6E 20 $24P9
2018: 8D 77 20 8D 7F 20 8D 92 $2FOE
2020: 20 A5 3A 8D 62 20 8D 6D SDE61
2028: 20 8D 76 20 8D 7E 20 8D $0763
203@: 91 20 AD 07 BF 85 3A AD $92C5
2038: 08 BF 85 3B AD 8B CO AD S$6E88
2049 8B CO AD 69 B9 59 20 91 $36A6
2048: 3A 88 10 F8 20 00 BF 65 $BF93
2050: 52 20 04 00 00 00 00 00 $5437
2058: 00 B8 A9 40 8D FE C2 A9 $60A6
2060: 03 20 9F 20 8D 92 BF A9 $3AQF
2068: 05 2C 06 BF 20 9F 20 8D $FOB2
2070: 93 BF B8 A9 OC 20 9F 20 33615
2078: 8D 91 BF A9 QA 20 9F 20 SCl4E
2080: 4A 6A 6A 6A 8D 90 BF AD $31C4
2088: 91 BF 2A 8D 91 BF A9 08 $B76D
2090: 20 9F 20 0D 90 BF 8D 90 $56D2
2098: BF A9 00 8D FE C2 60 09 SD3DA
20A0: 10 AA 8D FE C2 AD F9 C2 $BD89Y
20A8: 50 02 29 03 29 OF 85 3A §870C
20B0: OA A 65 3A OA 85 3A CA $7F6E
20B8: 8E FE C2 AD F9 C2 29 OF S75EB
20C0: 65 3A 60 §F385

¥

COMPUTIST No. 35 19

Putting a New F8 On
Your Language Card

by Ken Burnell

Requirements:

Apple Language Card

Low wattage soldering iron

Small diameter solder

Small diameter wire strap

Apple][Plus or equivalent computer (not //e
or //c)

2716 EPROM

Exacto knife or equivalent

Access to an EPROM burner

Note: The following procedure involes
modification of your motherboard and/or your
Language Card. COMPUTIST will nor be held
responsible for any damages incurred while
SJollowing this procedure.

Ever since I read an article in **Computers
& Electronics’ on custom programming Apple
EPROMs (reference #1), and bought an
inexpensive EPROM burner, I have been
burning custom F8 EPROM’s for my Apple,
and enjoying it more. (I had previously built
a ROM/EPROM adaptor socket for the Apple
motherboard (reference # 2)). Therefore, when
I read Ray Darrah’s article in COMPUTIST
No. 19 (reference # 3) I happily set out to round
up a 2732 EPROM and miscellaneous small
parts and program up a new, improved,
expanded super F8. But, after re-reading Ray’s
article completely through again, I realized that
I didn’t really want to fool around with adding
an extra chip to my virgin motherboard. cutting
traces, ctc.

So, I shelved the project (with several others)
until I could find a better way. The procedure
I finally came up with assumes that you have
an Apple Language Card, APPLE Product
A2B0006 or equivalent. The way to spot this
card is that it has a short sixteen-wire cable
extending from a DIP socket on the card to a
RAM socket on the motherboards (Apple says
to use the RAM socket at location E8 but
replacing other RAM chips in other locations
will also work). Most important of all, this card
has an an F8 ROM chip (usually a 9316)
mounted near the rear of that card.

There are a few things you should k.iow
about the Apple Language Card and its ROM
chip. First, the ROM on the card effectively
replaces the F8 ROM on the motherboard. In
fact, with the Language Card installed, you can
remove the F8-ROM altogether on the
motherboard (with the power turned OFF, of
course!) and the computer will still work just
fine. But the second, and more important fact
is that the Apple Language Card, like the Apple
Integer Card (remember those?), has two sets
of solder pads. When these pads are modified.
the substitution of a programmable 2716
EPROM for the standard 9316 non-
programmable ROM supplied with the card is
allowed.

The Way

The procedure, which references the sketch
on page 21, requires the use of an exacto knife
or equivalent, a small (1/4 inch or so) piece of
wire (28 to 30 gauge. solid copper if you have
it) and a low temperature soldering iron.
Note: Using a standard "‘soldering gun'’ 1ype
iron on any printed circuit board could damage
the bourd.

20 COMPUTIST No. 35

For printed circuit (PC) work, I use a fifteen
to thirty watt iron, maximum, with small
diameter resin core solder. I have found that
solder diameter size # 30 works fine for the
what we will be doing.

The procedure for modifying the Language
Card to accept EPROMS instead of ROMs is
as follows:

1) Using the knife, cut the copper circuit trace
at the X-shaped pads marked ‘2716’ as shown
on the sketch at point A. Only a small, deep,
cut is needed to sever the trace. If you have a
continuity tester (or VOM meter), place it on
a low-resistance setting and use it to test for no
continuity between the cut traces after
performing the surgery.

2) Place a short piece of small diameter copper
wire across the O-shaped pads marked ‘2716
at point B on the sketch. Solder the jumper
across the pads, joining the pads.

3) Install your EPROM being sure that the notch
is pointed in the same direction (usually up) as
the ROM you’re replacing.

4) Re-install the card and its jumper cable back
onto the motherboard, and you're done. The
next time you boot up your computer, it will

boot from your new EPROM on the Language
Card.

Burning EPROMs

At the end of this article, I've listed several
references to various articles and published
letters previously written about burning
EPROM’s for Apple][computers. One of the
problems I had, initially. with this process was
that the authors told how to modify the

EPROM’s code, and how to write binary
programs of them, but not how to get the binary
code into the EPROM’s!

Fortunately, the BSAVE and BLOAD
commands of DOS helps to make this job easy.
For example. to save the contents of the F8
ROM (‘‘uploading’ in computer talk), you
would type

BSAVE STDF8,5AF800,L.$800

where **STDF8'" is the file name I chose.
$F800 is the beginning address in memory and
$800 is the length of the file (SF800 through
$SFFFF in the ROM). This would create a
binary file of the code in the F8 ROM (which,
by the way is printed in Apple’s reference
manual in an appendix (reference # D)).

Later, when you want to transfer the binary
file on disk to an EPROM in your EPROM
burner, it is first necessary to select an address
in RAM for the file to go. I usually use address
$1000 for ease of making address calculations.
Then, transfer the file from disk to the memory
of the computer (‘‘downloading’’). The
command to use here is BLOAD and it would
look like this:

BLOAD STDF8,5A1000

Now, you would typically transfer control to
your EPROM burner and instruct it to burn an
EPROM using the data starting at $1000.

EPROM’s And Special Keyboards

There are several keyboards around that are
claimed to be exactly ‘‘plug compatible’” with
the standard Apple keyboard - that is, you can
unplug your Apple keyboard at its sixteen-pin
plug (better note the orientation of that plug or
bad things may happen) without using a special
adaptor board. But, if the replacement keyboard
has lower case capability, you probably won’t
see the lower case characters on your monitor!
This is because the Apple’s F8 ROM converts
the lowercase characters to uppercase before
putting thcm on the screen.

Well, we can’t have that can we? In Mr.
Mitchell’s article (reference # 1) he told how
to fix this problem by modifying the code in
a new F8 ROM, and he also told how to do
some other interesting things like having your
name displayed on the computer’s monitor
when it boots up instead of Apple’s, etc. I
strongly recommend Mr. Mitchell’s article to
anyone wishing to customize ROM’s in his
Apple][. In COMPUTIST No. 9, (reference
4) an the author told how to modify ProDOS
1.0.1 to run on Franklin Ace and other Apple
clones. Recently, Beagle Brothers (reference #
5) gave a tip on how to modify ProDOS 1.1.1
in much the same manner.

Some software checks for a code at location
$FD83 in the F8 ROM. This code indicates that
a particular computer (][+, //e, Franklin, other)
is being used and then bombs if it doesn’t like
the answer. Likewise, the software may
checksum-check the whole ROM. One solution
to this problem is to use Ray Darrah’s
2732-chip-with-a-switch trick (reference # 3)
and switch between a standard F8 image and
your custom one in either half of the 2732 -

mounted on your motherboard, Integer Card.
Language Card or... The variations are limited
only by your imagination and pocket book.

The Integer Card

I mentioned earlier that the Apple Integer
Card might also be modified to take 2716
EPROM’s. Well, it can, in much the same way
as the Language Card - by changing the wiring
on two sets of O-shaped and X-shaped pads as
above. Then the five ROM’s - DO, D8, EO. E8,
F@ and F8 can all be replaced with 2716
EPROM's.

Now. suppose you want to program often-
used utility software into memory locations
$D0OO through SF7FF, ordinarily taken up by
Applesoft in the][+. Do you suppose I could
break up my favorite binary program into 2.048
word (2K) blocks. store them on disk as binary
files, download them to 2K 2716 EPROM s in
my EPROM burner, replace the DO-FO
Applesoft EPROM s (that I previously replaced
the 9316's with). flip that magic red switch on
the back of the Integer Card. and have. say the
Copy][Plus utility programs up and running
at the flip of a switch? I'm sure it can be done
but I haven't tried it mysclf.

About EPROM Burners

EPROM burners can be expensive. I've seen
them from thirty five dollars (the card fits into
a slot in the Apple) to thousands of dollars. And
EPROM erasers ain’t cheap, either - they can
run from about $ 50 to $ 80 and up. But,
EPROM'’s are erased by UV (ultraviolet) rays
like those given off by the sun and many
fluorescent tubes. So, they say it's possible to
tape an EPROM to a fluorescent tube or set it
out in the sun for a week or so, and it should
erase. Or, you may want to get together with
a few friends and share the cost of an
inexpensive burner, and, maybe an eraser.

The price of 2716 chips is down to a few
dollars each. You don’t need the **fast’” 250

ms jobs. The slower, less expensive ones at 450
mss or so will work just fine. A good source of
all this hardware is advertisements in the back
of Byte. Computers & Electronics or
COMPUTIST magazines.

Have fun burning.

References:

1) Computers & Electronics, November 1983,
Pages 58-60. Customize Your Apple With an
EPROM Plug by S. F. Mitchell

2) COMPUTIST No. 6, Pages 14-16, Modified
ROM:s by Ernie Young (see COMPUTIST No.
8 page 26)

3) COMPUTIST No. 19, Pages 9-11. Double
Your ROM Space by Ray Darrah

4) COMPUTIST No. 9, Page 18. Using
ProDOS On A Franklin ACE

5) Pro-Byter by Beagle Bros, page 78

6) COMPUTIST No. 8. Page 3, Reading Apple
ROM’s

7) The Best of Hardcore Computing. Page 46

Curing Those Auto-Starr Blues by Charles R.
Haight

8) COMPUTIST No. 9, Page 5, Mod2 ROMs

9) COMPUTIST No. 12, Pages 24-26, Pseudo-
ROMs On The Franklin ACE by Ken Stutzman
(see COMPUTIST No. 14, page 9)

A) COMPUTIST No. 19, Pages 18-24,
Towards A Better F§ ROM by Earl Taylor

B) COMPUTIST No. 22, Pages 4-5, Modified
PROMs On The //e

C) COMPUTIST No. 24, Page 5, Double Those
ROMs

D) Apple][Reference Manual, APPLE Product
#A2L0001A, Appendix C

+ b solder
|-~ here

fa) cut here

COMPUTIST No. 35 21

A Review of...

The Senior PROM

by Robert Knowles

Curting Edge Enterprises
Box 43234 Ren Cen Station
Detroit, MI 48243

$79.95

So you want to take control of your Apple
//e or //c? You've decided you need: a way to
reset directly into the Monitor, an NMI & copy
card, a sector editor, and some machine
language utilites, but you only have 80 bucks
to spend? A new, low-cost device consisting of
32K of ROM and a pair of switches attached
by a ribbon cable, going by the name of the
Senior PROM, may be just what you've been
looking for.

Description

The Senior PROM (SP) is a printed circuit
(PC) card about two inches square, that replaces
the 8K (2764) CD and EF ROMs on the
motherboard with a pair of 16K (27128)
EPROMs. These contain an image of the
original Apple ROMs in one half and the SP
firmware in the other half. At the end of the
two foot long ribbon cable is a second PC card
(2" by 1") with a pushbutton switch for
performing Non-Maskable Interrupts (NMI’s)
and a three-position toggle switch to select and
deselect SP. A small micro-probe with just
enough wire to reach from the SP card to pin
6 of the 6502 provides the hookup for the NMI.
A companion disk (described below) is
included.

Installation

Installation is slightly more complex than just
plugging in a card. You must remove the CD
and EF ROMs, observing the usual precautions,
insert the Senior PROM into the empty sockets,

and attach the NMI wire to the processor.
Although I have not tried the SPona //c, I'm
sure that installation in the //c will be a bit
trickier, as the case ‘‘snaps’’ together.

Documentation

The documentation included with the SP is
comprised of three stacks of stapled-together
pages, all of which have clear, easy to read
print. The thickest stack (54 pages) contains
installation instructions for both the //e and //c
and gives a thorough description of all the SP’s
features. In many cases, the instructions explain
why a feature is provided and possible uses for
it are given.

The smallest stack contains a keyboard
overlay (on ordinary paper in two black and
white halves that must be ¢ut out and taped
together) for quick reference to the options tha:
become available directly after pressing Rese..
This stack also contains diagrams for opening
your computer and installing the SP.

The third stack is entitled ‘‘Deprotection
Methods and Techniques Using the Senior
PROM."" This one gives an introduction to copy
protection and indicates things to look for when
identifying a protection scheme, with some
ways to get around them. This is a very general
manual (not much detail does 33 pages make),
but it should provide a good starting point for
the novice, assuming he knows assembly
language.

The Switches

The SP firmware is inactive when the toggle
switch is toward the rear of the computer. In
this mode your Apple works like normal,
ROMS and all. When you switch it to the
forward (activated) position, Applesoft BASIC
disappears (this could cause bad things to
happen if you happen to be running an
Applesoft program) and the only means of
talking to vour computer is through the SP’s
cnhanced monitor. Once here, you have several
utilities at your disposal including a sector

22 COMPUTIST No. 35

editor, RWTS menu (with a disk copier) and
Memory Management.

However, the real power is available when
you press Reset or the NMI button. If the SP
is in the ‘‘activated’’ or *‘transparent’’ (middle)
position, the computer stops everything,
responds with a distinctive beep, and sits in the
““Wait Mode."" At this point there are a number
of options available. You can drop directly into
the Monitor, reboot without destroying
memory, or go directly to the built-in RWTS
utilities. You can copy all of the main RAM
to the auxiliary RAM (assuming of course you
have at least 128K RAM) for saving; swap main
and auxiliary; see where the program was when
you interrupted it (if you used NMI); restart a
program from the last time you interrupted and
saved it; dump the text screen to the printer;
and a few other things. All these options appear
on the keyboard overlay so you can quickly
choose the one you want. If however, you
refuse to tape the keyboard overlay to your
computer, you will be forced to memorize
several arbitrarily assigned keys.

The Menus

The RWTS Utilities, also called the Main
Menu, appears on the screen after pressing the
0’ key from the wait mode. From here you
can format a blank disk without DOS, copy a
disk, alter the prologs and/or ignore the epilogs
when reading a disk, or ignore most other
RWTS errors (via the handy-dandy
B942:18). The sector editor and disk copier can
use either the RWTS kept in ROM or use an
RWTS captured from a program you wish to
examine or deprotect. From the Main Menu,
one can also enter the sector editor or go to the
Mcmory Management Menu.

The built-in sector editor is not the greatest
ever, but it has many features. The standard
features like switching between ASCII and hex
display, reading incrementing sectors, editing
bytes. and disassembling the sector are there
as well as multiple sector buffering, disk and
memory searching, reading sequential sectors

into sequential memory. and nibble viewing of
a track. In addition to all that, viewing the
catalog, free sector map, disk comparison and
reading half tracks are also supported.

The Memory Management Menu is a repeat
of some of the memory move features available
through the Wait Mode with the addition of
copying sections of auxiliary RAM to useable
main RAM for examination. Another option
writes a test pattern into main memory for
tracking what memory a program takes up. This
menu could have been easily incorporated into
the Wait Mode, but wasn’t for some reason.

A New Monitor

The modified monitor will be a welcome
addition for those who have 65C02s and want
to use the extra opcodes available. The
disassembler and the mini-assembler are both
fully 65C02 compatible (a function not available
even in the enhanced //e ROMs). The Step and
Trace commands have been resurrected from
the grave Apple put them into and may come
in handy.

The hexdump and disassembler have an
ASCII display along the right side of the screen,
useful for searching for text strings. This part
has a harmless bug in which the ASCII is only
printed at the bottom of the screen. It scrolls
up normally, but if you start disassembly at the
top of the screen the ASCII does not get printed
on the same line until the display does start
scrolling. I hope this will be corrected in later
versions.

The Fun Part

One of the features that the SP’s
advertisement is trying to push is the ability *‘to
halt a program and instantly swap between two
different 64K programs.”’ It usually can. The
catch is, you have to be able to break the
program with an NMI so that it knows where
to restart the program, or else know the entry
point. I wanted to try this with my word
processor and Dino Eggs (a classic!), for
example. Dino Eggs works just fine and I could
restart it any time I wanted. I could do most
of the tricks like freezing the game before a
level and retrying that level until I finished it,
and even playing two games at once. However,
things got tricky when programs took up 64K,
or just played with the ‘‘language card’’. I was
unable to restart Flight Simulator II at all and
Magic Window //e was extremely balky, but
it can be done with most 48K programs. Some
programs are simply hopeless, but this is due
more to the //e’s hardware than to a fault in the
Senior PROM.

The Disk

The disk contains utilities to save the contents
of memory on disk in either 48K, 64K or 128K
versions, depending on the program
requirements. This allows you to restart the
program cold from a DOS 3.3 environment.
Also included (free uniess you use them) are
Diversi-DOS and Diversi-Copy from DSR. If
you do decide to use them, DSR requests that
you pay for them. You can also find COPYB,

a COPYA modification that reads and copies
protected disks with their own RWTS (like
Super IOB's swap controller).

Gripes

Four out of five hackers surveyed prefer a
cursor-based sector editor so they know exactly
which byte they are dealing with. In the SP’s
sector editor, you must specify the byte number
from a prompt at the top of the screen, then type
in the bytes with only an address to tell you
where you are. I prefer a visual indication of
what I'm doing in cases like this.

The sector editor’s search function is not like
I expected. First you have to specify the string
you want to find, then it always (whether you
wanted it to or not) searches memory for all
occurances of the string or sequence. Oh, you
wanted to find it on disk? After wading through
the memory search, press *‘L"" for Locate.
Now, tell the sector editor to search through
the sectors and it will beep for each one it finds
and stop. The catch is, it doesn’t tell you where
in the sector it found the string. This forces you
to visually scan 256 not-so-readable, jam
packed together bytes for the search string.

It would have been nice to have a screen-to-
printer function available for all the features in
the sector editor, like the disassembly or the
memory searcher. But Noooo! If you want a
screen dump, you have to hit the NMI button
and print the screen from the wait mode. You
CAN dump the sector display by pressing
(9S), which (oddly) is in the wait mode.
Pressing in the sector editor changes the
disk drive slot (P for Peripheral? Give me a
break).

The documentation mentions a ProDOS
mode for the sector editor while talking about
changing buffer pages, but no mention is made
of how to activate it, if it even exists.

Methods of movement between features are
inconsistent. To get into the Monitor, you press
ESCape from the sector editor or menus and
Delete from the wait mode. In the wait mode,

ESCape seclects the mixed or full screen
graphics. To get to the sector editor. you press
**8"" from the wait mode. **3"" from the RWTS
menu. Things like that made learning to use the
Senior Prom a bit tougher.

The Senior Prom circuit board is taller than
a normal chip in a socket. Its ROMs plug into
sockets on the board which in turn plugs into
the empty ROM sockets on the motherboard.
This height difference will cause problems if
you have long peripheral cards plugged into
slots 6 or 7 of the //e. The Disk][controller
card will be OK, but a card more than a couple
of inches longer than that will run into trouble.
I was concerned that the micro-probe attached
to the 6502 would be too high for slot 4 or 5.
but repositioning the probe leaves plenty of
room for cards, -

A Bargain?

Since this is still a fairly new product. it needs
a little cleaning up, especially in the sector
editor. However, having a sector editor and
copy program ready to use at any time (DOS
or no DOS) can help you overlook many of its
limitations. It will take a couple hours of
exploration and referring to the manual to get
comfortable with it, and it will not make much
sense if you haven't used machine language
before. In fact, the ‘‘Deprotection Methods™
manual emphasizes that you should read and
study the **Apple // Reference Manual (//e)""
and ‘‘Beneath Apple DOS''. and learn
assembly language and the Monitor.

If you add up the prices you would pay for
each of the features separately, they could add
up to over 150 dollars easily. On top of that.
all the tools are in one neat little package that
no program can detect. I intend to use it in my
/le here at COMPUTIST for quite some time.
It may not be pretty, but it can be a valuable
and educational tool for the serious user of
Apple //e’s and //c’s.

COMPUTIST No. 35 23

softkey for...

Wad%ueraa/e ana/ Of/wr

by Steve and Rod Smith

Phoenix Software
6640 N. Sioux
Chicago, IL 60646

Requirements:

2 blank disk sides

The Inspector or similar sector editor
Super 1I0B

Masquerade is a fine graphic adventure with
excellent graphics throughout. Unfortunately,
it also comes with a fine protection scheme as
well. Attempts at copying the disk will produce
only marginally booting copies at best. This
article deals with the protection scheme used
and lays the foundation for deprotecting other
programs using the same protection.

The Protection

Let’s begin with a description of the
protection scheme itself. To the best of our
knowledge, it was created by Dav Holle, the
man from Phoenix Software and Zoom Graphix
fame. He is a acquainted with of Mark
Pelczarski of Penguin Software, which may
explain the reason why Penguin’s protection is
so similar. Basically it has to do with disk
formatting. The address markers for the tracks
alternate every other track, even tracks being
D5 AA 96, odd tracks D4 AA 96. The data
markers are left alone. The epilogue bytes are
usually changed to DA AA or EB AA, although
any legal value may be used for the first
epilogue. This is one spot where the protections
differ from program to program. The two major
differences between Penguin’s use of the
scheme and others is the loader used and the
disk volume number (which is tied in with the
loader). Penguin uses a normal DOS with a
common disk volume number, where as the
others use Dav Holle's loader and all have a
disk volume number of zero. This disk volume
number is very important, but more on that
later. The methods for deprotecting the Penguin
version have been fairly well described, but the

original version of this protection scheme needs
a little more discussion.

An Overview of the Approach

The first objective in deprotection is to
convert the program into a format that can be
read with any normal copy program, such as
COPYA from the Apple DOS 3.3 System
Master disk. Then, the second step is to modify
the program to operate under these conditions
as well as to remove any further protection
schemes from the program, such as nibble
counts, et cetera. The one advantage in having
to undo this protection is that it does not
incorporate any further protection past the
abnormal disk format. So this is where we
begin.

Two different programs provide a way of
converting to a normal format, the first of which
is Super IOB. The controller at the end of this
article has a few things worth noting. The last
track (variable LT) specified in line 1010 does
not neccessarily need to be 35. Some disks using
this protection only use part of the disk,
Masquerade being one of them. Its boot «.de
only uses tracks @ through 17. So, if you use
this controller for a different program, set LT
to one more than the last track actually used.
The other note is in line 1110. The argument
of the two pokes (POKE 47505,x : POKE
47413,x) is the epilogue byte mentioned before.
For this particular controller, a value of 235 is
used, but it could be different for another
program. A way to find the correct value will
be shown later.

Just install this controller in Super IOB and
run it on the disk. Super IOB also provides an
easy way to correct for a disk volume number
of zero. When prompted, format your data disk
with just such a number. For Masquerade, our
job is a bit easier, as the actual playing side is
in a normal format to begin with. So just
convert side one. Other programs may use
different configurations.

Making It Work

OK, that was the easy part. Now for the
really fun stuff. We have changed the program’s
operating environment, so we need to modify
the program to run in its new one. This requires

24 COMPUTIST No. 35

the modification of four sectors of code on track
zero. In order to do this efficiently, one must
be able to read the specific sectors into the
correct memory pages used. This is so we can
see the code in its actual running environment.
At the very minimum, you must at least be able
to write out memory pages onto specific sectors,
but if you can do this, you can read them in
as well. The purpose of this is to avoid a boot
trace, where the end result is the same. The
program best suited for this purpose is the
Inspector, and it is assumed here that this is
what is being used.

The code under consideration resides all on
track zero, the boot track. The best way to
modify it is to just read the sectors used into
their eventual memory locations. The following
table shows what these should be:

(Track $00)

Sector should be read into
00 $800
gE $900
@D $A00
oc $B00

Once the code is in place, we want to enter the
monitor and modify it. A few things should be
noted also.

Description of the Loader

$801-828: This loads in the rest of the boot
code.
$887-92D: Sets up some zero page locations,
clears the hi-res graphics screen, moves ROM
into a RAM card (if present), and modifies the
RESET vector.
$930-9SF: This decodes the reset program and
stores it down on the stack page. Then it
decodes the rest of the boot code at $962-BFF,
and stores it down on the text page. Jumps to
continue the boot at $95F (JMP $792).
Well, all this code seems harmless. We are
intersted in where it reads in from the disk
again, so we can change it to read a normal
format. This is the code that is encrypted
starting at $962. So we must decode it to look
at it. To do so, while the boot data is in
memory, make the following changes:

Dav Molle

rotections

952:60
(to stop the decoding routine)
945:09

(to store the code in the same spot)
Then we run the decode part of the boot by

typing:
91BG

Now the code should be in its final format.
Before we forget, we must return the part of
the program we just ran back to its original
form, so type:

952:A5
942:09
945:09

Once this is done, we can start to examine
the rest of the boot code. Before, we saw a jump
instruction to $792, so we begin our trace at
$B92, since we did not allow the program to
relocate the code. At this point in the discussion
it should be mentioned that tracing this type of
code is very difficult and tedious, since the
program manipulates the stack’s return
addresses for much of its operation. You will
note that the code does not flow smoothly from
$B92 on up. This is because the returns from
the JSRs do not come immediately back, but
are moved ahead slightly. If you look at $BF4,
you will see a JMP $FC58, which is the
monitor’s HOME routine. There is an RTS at
the end of the routine, but just where will it
return to? Well, by the time the code is this far,
there are two extra values left over on the stack
that have been forced on previously. The values
point to the actual beginning of the program.
If you look at $A3F and $A40, you will find
an FF 07. This is one less than the actual
program start, so the program really starts at
$800. All the loaders are exactly like this one,
except the code is perhaps longer or shorter by
a few bytes. They are relatively the same
though. So if you are examining a similar loader
from a different program, bear in mind that the
addresses used here are for the Masquerade
loader only. The address you need should be
very close, though. Just look for the same code
in some relative position and see by how much
they are shifted. Then just keep that difference
in mind. OK, so in and amongst all this jumping

about, there must be some disk routines. Well.
yes, it turns out that they start at the very
beginning. If you list $962 and up, you will
notice the familiar drive addressings and such.
So what needs changing?

The RWTS Modifications

$9A9: Change from EB to DE (with 9A9:DE).
This is the epilogue byte that was modified.

$A10: Change from EB to DE (same as above).
$B6E: Change from 29 to 09. This is part of
a routine that takes the current track number
and checks it with the current address header.
Since we will no longer have a D4 as part of
the address header, we must modify the routine
to produce acceptable values. Basically, we
changed an AND to an ORA, so we will not
get zero values.

Now that we have the rest of the boot
decoded and the RWTS fixed, there is but one
more change to make. When the code was being
decoded by the program, it EORed with the
current value of the accumulator before storing.
We do not want this, as it will destroy our own
decoding job. So at $940 we change the
instruction to LDA by making it a BD
(940:BD).

To finish, just write back the modified sectors
to disk according to the sector/buffer table given
previously. If you used the Super IOB to
convert the disk, you should have already
formatted the data disk with a volume number
of zero. If you forgot to do so, you will want
to use the INIT program from Bag of Tricks
to re-format the disk, preserving data of course.

This completes the deprotection of
Masquerade and any other program using Dav
Holle’s protection methods. Other programs
that we are awarc of using this scheme are:

Sherwood Forest

How About a Nice Game of Chess?
Chess 7.0

and Queen of Phobos

We have succesfully deprotected all but
Chess 7.0 (which we do not have) using this
method with only minor changes. The changes
involve only the diffences in epilogue bytes and
code addresses mentioned earlier. To determinc
what the epilogue bytes are for your program.

you may either boot trace the disk until the
RWTS is decoded, or you may read in the
sectors off track zero, following the procedure
and table above. You may have to turn off the
checksum at $B942 (B942:18) in order to read
these sectors. Or yet, maybe one of the nibble
analyzers with a bit copy program can give you
an indication of what they are. Just remember
to change the Super IOB controller accordingly.
We have found that the deprotected versions
boot faster and more reliably than the originals
do. So, besides having a back up of your
precious original, you have another reason to
take off the nasty protection scheme!
Good luck, and happy cracking!

controller

1000 REM DAV HOLLE CONTROLLER
1010 TK=0 :ST=9 :LT=35:CD=WR
1920 T1 = TK : GOSUB 490 : GOSUB 1119

1030 GOSUB 430 : GOSUB 189 :ST=ST+1 : IFST<
DOS THEN 1030

1940 |F BF THEN 1060

1059 ST=0 :TK=TK+1 : GOSUB 1110 : IFTK< LT
THEN 1039

1960 GOSUB 230 : GOSUB 499 :TK =T1 :ST =0

1079 GOSUB 430 : GOSUB 109 :ST=ST+1 : IFST«<
DOS THEN 1070

1080ST=0 :TK=TK+1: IFBF =@ AND TK < LT THEN
1079

1099 IF TK < LT THEN 1020

1100 HOME : PRINT : PRINT "DONE® WiTH* COPY" :
END

1110 POKE 47505 ,235 : POKE 47413 ,235 : IFTK/
2 <> INT (TK/ 2) THEN POKE 47445 212

1115 IFTK/ 2= INT (TK/ 2) THEN POKE 47445 213

1120 RETURN

controller checksums

1000 - $3568 1070 - $A827
19190 - $3266 1080 - $8EE6
1020 - $SA7C4 1099 - $0D80
193¢ - $BICS 1100 - $7496
1040 - $35FA 1116 - $C000
1050 - $7575 1115 - $FCDA
1960 - $AD22 1120 - $6914

b4

COMPUTIST No. 35 25

a littie help with...

Sword of Kadash

by John Della Pia

Penguin Software
830 Fourth Ave.
P.O. Box 311
Geneva, IL 60134

Requirements:

A deprotected backup of Sword of Kadash
(see COMPUTIST No. 27)

A sector editor

Sword of Kadash came in such a colorful
package I just couldn’t wait to boot it up and
start playing. But after a few sessions I renamed
it Bored of Kadash and stuffed it back on the
shelf. The original protected copy of Sword of
Kadash. at least the Apple version, is very hard
to enjoy playing. Each time your last player is
killed the entire playing disk must be recopied
using the slow copy program that comes with
the game. This becomes tedious very quickly.
After receiving COMPUTIST No. 27 with
Michacl R. Ditzs softkey for Sword of Kadash
and using it to deprotect my disk, I decided this
game might be worth playing if I could give
my character a fighting chance. So, armed with
Copy II Plus’ sector editor and the Crucial Code
Finder by Enrique Gamez (a memory search
utility from COMPUTIST No. 6), I spent the
next few evenings digging through code. With
the resulting APT you will be able to customize
Sword of Kadash as you wish. You can save
the game position before trying anything
dangerous. add as many lives as you like, or
build a much stronger character to aid you in
your quest. For those who are in @ hurry to start

playing I have added instructions at the end. Just
follow the steps there and refer to the character
attribute table to build your super Kadash
character. For those who want to follow along
I'll explain the reasoning behind the APT.

The back of the Kadash disk contains all of
the room data as well as the character attributes.
The data table for the character attributes is
located on track $22, Sector $F, bytes $00-$1A.
Table two is a listing of these bytes and what
each one equates to in the game. When you use
a new player disk for the first time these
attributes are read into the game from the player
disk. If you save the game by pressing (20
the character attributes you have develor:d
during play are saved back to the player d.sk
to the same track and sector where the original
default values were stored. The condition of the
last screen being played is also saved at this time
to the track and sector on the disk originally
occupied by that screen. When restoring an old
game, the program reads in the saved attributes
and then goes to the last-used screen to resume
play. Restoring with one player disk and then
replacing it with a fresh disk will give you a
fresh set of screens complete with treasures to
find, traps to avoid and monsters to slay while
leaving you with the character attributes
developed on the first disk. That’s not much of
a bonus unless your character is strong enough
to handle the job.

The ecasist change you can make to Sword
of Kadash is to the number of lives you get
before the dreaded skull and crossbones appears
on the screen telling you it’s time to copy yet
another disk. By changing byte $1A in the data
table from $02 to any other number you can
add that number of lives to your character.
However, changing any of the other bytes leads
to trouble. When you start to play and place
your newly modified player disk in after being

26 COMPUTIST No. 35

prompted to do so all you will get is an **Illegal
Character Disk’ message. This is because
Kadash loads in the data table and then checks
to see if these bytes have been changed before
it reads in the screen data and starts the game.
If you have changed any bytes the program
won’t run.

The subroutine that does this check is found
in the program ‘*HIMEM"’ and loads into the
computer memory at $5E00. Table one is a
listing of this code along with some remarks
on what it is doing. As you can see from the
listing, the table on track $22, sector $F of the
data disk (Side B of the original Kadash disk)
is first loaded into memory at $4400. Then the
byte at $4416 is tested. If this byte is zero the
program jumps to $4FCO and the *‘Illegal
Character Disk’’ message appears. If the byte
is not zero the code branches around the jump
and loads both the A and X registers with $00.
Following this, the memory locations from
$4400 to $4415 are Exclusive-ORed against the
A register. The result of this is compared with
the number at memory location $4419. If the
sums match the program goes on. If they don’t
match the program jumps to $4FC0 and we get
the ‘‘Illegal Character Disk’’ message. To
remove the checksum and allow any attributes
you like to be given to your Kadash character
all that is necessary is the removal of the two
JuMPs to memory location $4FC0. You can do
this by searching and editing the disk or by
BLOADing the program HIMEM, modifying
it and BSAVEing back to the disk. Once this
is done you are free to modify your character
as you wish.

A side note: I had a great deal of trouble
using the softkey for Kadash on my copy. After
repeated failures I retraced Mr. Ditz’s softkey
and broke the controller back down into two

Table 1

Code in program HIMEM that reads
character attributes and does a checksum on
them.

5E@P- LDX #s22
5E@2- STX $O30E
5EQ5- LDX #S0F
5EQ7- STX $O30F
5EQA- LDX #$44
5EQC- STX $0313
5EQF- LDX #301
5E11- STX $0316
5E14- JSR $0300

Track Number to read.
Sector Number to read.

Load Address = $44017

Read the data disk
and come back
Get the byte now at
memory location $4416
If byte is zero then
perform next command.
If not zero branch

o "illegal disk"
subroutlne

5E17- LDA $4416

5E1A- BNE S$5ELF

5E1C- JMP $4FCO

S5E1F- LDA #3500
5E21- LDX #3500
5E23- EOR $4400.X Perform checksum on
locations $4400-$4415
5E26- INX
5E27- CPX #$16
5E29- BCC $5E23
5E2B- CMP $4419
5E2E- BEQ $5E33

Loop back $16 times

Compare the result
with the byte at
memory location $4419.
If they match, skip
the JMP to "illegal"
routine and continue
program.

Else goto "illegal
disk" subroutine.

5E30- JMP $4FCO

parts. I also removed the data statements and
did the DOS editing using a sector editor. That
did the job.

Here’s How

To patch the deprotected Sword of Kadash
to allow changes to the player disk:

=1984 Chris Cole

i ¥R
LAARRARRRARRNARERRRARNNNEANNL)

Load in the binary file ‘*HIMEM™’ from side
A and replace the JMP $4FC0s (4C C0 4F) with
NOPs (EA EA EA).

BLOAD HIMEM

CALL-151

SE1C:EA EA EA

SE30:EA EA EA

BSAVE HIMEM,A$4000,1.$5400

To modify the character attributes:

Sector edit track $22, sector $F, bytes
$00-$1A as shown in table two.

To change your level, spells, hitpoints,
maximum hitpoints or experience use only
decimal digits 0-99 (Don’t use digits $A-SF).
Maximum hitpoints, current hitpoints and
experience are stored in reverse. That is, 00 20
is actually 2000 when you start playing.

Don’t be too greedy. If, for example, you
give yourself 99 spells and then grab one more

¢

ZHEST

HI TF' I HT=
LEUE
'\-'FEII-I-'

MOV

T T 1
R :,,.. e e
K a;:;: e
e
T
l"l saaiiis
| e
I | I % Ry
_ | o
h rrty

Y namix
sERRRRRRRRRRRRRRRRRRRRRRRRRnY
when playing the game the counter will flip to
00 and you won't have any spells at all!
To save your position before attempting
something dangerous:
1) Press to save the game position.
2) Press the spacebar and “*B"" to continue.

3) If you wish to return to the point in the game
where you pressed

, remove the player disk and insert a blank
formatted disk.

4) Press .

5) Remove the blank disk and insert your player
disk.

6) Press the spacebar and “*B".
Table 2

Character Attributes for Sword of Kadash.
Track $22, Sector $F, Bytes $00-$1A

Byte Used for

$00-$03 Screen no. and character position

$04 Weapon $00-$0A

$05 Armour $0C-$12

$06 Saves weapon value when cursed
$07 Saves armour value when Cursed
$08 Level 01-99 decimal

$09 Cursed = 01 Uncursed = 00

$0A-$0B Maximum Hitpoints (low byte first)
$0C-$0D Actua!l Hitpoints (low byte first)
$0E Armour class

$OF (Armour class backup?)

$10-$11 Experience (low byte first)

$12

$13

$14

$15 Spells (Use 00-99 decimal)

$16 0 = illegal disk. 1 = good disk
$17

$18

$19 Checksum of attributes

$1A Number of lives (Use decimal)

COMPUTIST No. 35 27

softkey for...

The Hobbit

by J. J. Gifford

Addison-Wesley Publishing Co., Inc.
Jacobs Way
Reading, MA 01867

Requirements:

Copy program (COPYA is fine)
Sector Editor (such as DiskEdit)
or, Super IOB 1.5

Addison-Wesley has taken J.R.R. Tolkien's
classic The Hobbit and used it as the basis for
a mediocre graphics adventure game. Like
nearly every other game produced today. it is
copy protected. I tried to copy the disk using
a few bit copiers and met with little success.

In order to study the boot code, I booted my
copy (that would not boot completely). I noticed
that it hung only after the hi-res title page. I
used my Wildcard 2 to enter the monitor and
poke around a bit.

The first page of code I examined was page
$8. The code looked like a standard boot, except
for one thing: it moved code from pages $B6
and $B7 to pages $2 and $3 respectively. Then
it jumped to $200. The code for these steps
starts at $839 and looks like this:

0839- A2 00 LDX #300

¢83B- BD 00 B6 LDA $B6GO. X
@83E- 9D 00 92 STA $0200.X
p84l- BD 00 B7 LDA $B700 X
P844- 9D 00 03 STA $0300.X
p847- E8 INX

p848- DO Fl1 BNE $083B
NB4A- 4C 00 02 NP $0200

As you can see, it is not hidden or encrypted
at all. Although the memory move looks
innocuous, there is something suspicious about
moving code from the RWTS routine area to
page $2 (the input buffer), which gets partially
overwritten by a reset into the monitor. To

follow the program flow I decided to examine
pages $B6 and $B7 rather than $2 and $3. Since
they were mirror images of each other (with
the exception that page $2 was a little scrambled
by my entry into the monitor), it shouldn’t
matter which set I examined.

Page $B6 had the unusual begining:

B600- 4C 04 92 IMP $0204
B6@3- 2C A9 @1 BIT $@1A9
Bo06- 8D EE §3 STA SO3EE

Since this code also resides at $200 in
memory, the JIMP at $B600 (and $200) only
jumps over | byte, $B603 (or $203). If we list
the code as the computer would see it upon
execution (skipping byte $B603, that is) it would
look like this:

B60@- 4C 04 02 JMP $0204
B6@4- A9 01 LDA #3501
Bo06- 8D EE @3 STA SO3EE

It loads the accumulator with a #$01 and
stores it at $O3EE. This funny jump is one of
the few bits of trickery Addison-Wesley has
included in their protection scheme, however.
Looking further down the sector, we see a
segment of code that turns on the hi-res screen.
This code starts at $B617 and runs through
$B620. At $B623 there is a JSR (Jump to
SubRoutine) to $348. The routine at $348 is also
at $B748. Thus, we can see what the routine
does by typing B748G. The disk spins, and the
drive head reads several tracks in rapid
succession. If you listen carefully to a boot of
The Hobbit, you find that this is what the drive
does immediately before the computer hangs.
on a bad copy. Notice that the routine returns
control to the monitor. This tells us that it
returns to the instruction immediately following
the JSR; it does not jump off to other code.

The instructions following the JSR start at
$B626 and look like:

B623- 20 48 §3 JSR 0348
B626- A5 01 LDA $01

B628- FO 23 BEQ $B62D
B62A- 4C 2A 92 JMP 8022A
B62D- A9 063 LDA #503

28 COMPUTIST No. 35

Note the BEQ (Branch if EQual) instruction
at $B628. This sends program control to $B62D
if the value stored at $01 is zero (if a BEQ or
BNE is executed without a CoMPare statement
preceding, the computer assumes you meant to
compare the accumulator with zero). This jump
only skips over one instruction, the JMP $022A
at $B62A. The JMP at $B62A must be
important. If we type B62DG. the program
continues booting, and the game runs normally.
Now look at the JMP $022A carefully.
Remember the memory move commands we
saw on page $87 They transferred everything
from $B600-$BOFF to $200-$2FF. That means
that the JMP $022A is stored in memory at
$22A. It is a continuous loop. This is what
causes the computer to hang if the nibble count
fails. The program simply branches to a loop
from which it cannot escape. If we can get rid
of the JIMP $022A. and hence destroy the loop.
we have deprotected the game.

It turns out to be quite simple to disconnect.
First 1 searched the disk for the code
surrounding the JMP. I found the JMP on track
$0. sector $1. byte $2A. I replaced the three
bytes that compose the JMP instruction with
NOP ($EA, No Operation) instructions. Thus
the program would continue to the code at
$B62D ($22D) regardless of the result of the
nibble count.

Step by Step
1) Copy The Hobbit using any standard disk

copier. Even COPYA will work.

2) Using a sector edit such as DiskEdit, make
the following sector edits:

Track Sector Byte From To

$00 $01 $2A $4C SEA
$00 301 $2B $2A SEA
800 $01 $2C 02 SEA

That’s it! Enjoy your unprotected version of
The Hobbit.

. ¥

4008: 20 58 FC 20 E2 F3 8D 52 CO A9 FF
400B: 85 E4 AP 0@ 84 FC 84 FD 84 FB B9
4016: DO 40 84 @1 49 A5 C9 1A D@ @F A9
4021: 09 85 FC 85 FD A5 FB 18 69 OE 85
402C: FB D@ 62 OA AA BD 9C 40 85 FE E8

ESSENTIAL DATA DUPLICATOR

4037: BD 9C 40 85 FF A2 OF @6 FF 26 FE
4942: 99 3F 86 0@ 8A DA AA 48 BD 67 41
404D: 48 4A 4A 4A 4A A4 FD 18 65 FC 90

4058 01 C8 AA 68 29 OF 18 65 FB 20 11 Back up your copy-protected disks with when ordering direct. MA standard EDD 4
4063: F4 68 AA E8 BD 67 41 48 29 ¢F 18 Essential Data Duplicator 4 PLUS. W version which doesn't include any hard-
A06E: 65 FB A8 68 A6 FD 4A 4A 4A 4A 18 EDD 4 PLUS is new technology, not just ware is available, and can be used on Apple
4979: 65 FC 90 01 E8 20 3A F5 A6 00 CA “another” copy program. The EDD 4 Ilc and Il (using emulations mode) and
4084: 10 B8 A5 FC 18 69 OE 85 FC 98 02 PLUS program uses a specially is priced at $79.95. Add $3.00 (36.00
408F: E6 FD A4 01 C8 CO 97 F@ @3 4C 15 designed hardware card which foreign) ship/h :
409A: 40 60 08 5F 00 7F 08 33 14 91 0@ . e 1) ship/handling when
4A5: 3B 00 1B 20 73 80 5D 40 0 09 74 works with your disk drives to ~ ordering direct. M If you own
49B@: g8 11 @0 31 02 D5 @4 D5 0@ 77 00 back up disks by accurately . an earlier version, send us
40BB: 1F 00 09 08 1F 00 6B 49 92 09 75 copying the bits of data from your EDD disk and deduct $50
40C6: 00 08 0B 00 14 80 10 6D 00 00 A2 each track. Don't be fooled . . . 3 from your order. B Ask
40D1: Al AE AA AP Bl AE B5 A2 AD A8 B6 no other copy-program/system for EDD 4 PLUS at your local
40DC: BF BF Bl B7 AD A8 A3 BS AG AE AB for Apples can do this! B In addi- computer store, or order direct.
jgg g‘;\ g? /E:B 28 22 22 /B\; ﬁg /B\; 25 Qg tion to backing up disks, Epp_a PLUS Mastercard and Visa accepted. All
40FDE AE AD A8 Al B4 B7 BF B6 Al A8 A6 includes several useful utilities such as orders must be prepaid. M In addition,
4108: B7 B5 B6 AB B5 A6 Al B7 B6 B4 AB examining disk drives, certifying disks, dis- registered owners may purchase EDD’s
4113: BD BF A6 A5 B6 A5 BF BF B6 A2 Al playing drive speed rpm's, plus more! printed 6502 SOURCE CODE listing for
411E: BS5 A6 AD B7 AF A4 Bl B7 B6 Al B4 B EDD 4 PLUS runs on Apple Il, Il Plus educational purposes.
ﬁgz g; gg 28 g? 2; ﬁg ég Eg ig gi 2? (including most compatibles), and lle,

: and is priced at $129.95 (duodisk/uni-
ﬁi; gg 2; % g; gg Eé ég 52 2[1) 2? gg disk 5.25 owners must add $15 for a UTILICO MICROWARE
4155: BF BF B3 B4 Al Bl B7 Al A5 A4 AE X 3377 SOLANO AVE., SUITE 352
4160: Al B5 B6 AB AB B2 BF 00 05 00 Ad @ NAPA, CA 94558/(707) 257-2420

416B: A@ A5 05 A5 05 GA GA AA A5 AA 00
4176: 53 05 53 53 AD 53 A5 85 AA GA AS
4181: 55 A5 5@ 5A

é 4
Graduate... e
to the Senior PROM! iy O

Examine, modify, and backup your Sh
Apple //e and //c software! , WITING X OGE

AT,
\————

The Senior PROM is a hardware device with deprotection
utilities instantly available from any program. Including:

»Enter the Monitor to examine or change memory.

- Display where in memory the program was running.
»Disassemble, view or save any memory, even $00-"7FF.
«Display the Stack for return subroutine addresses.

» Instantly switch between two different 64k programs.

After interrupting a program and examining or altering
? memory, the program may be instantly restarted. Or it

‘ G | may be saved to disk in normal B-files & later restarted.
[t The Senior PROM also has a sophisticated Sector Editor
and Memory /Disk Detective, and its own DOS with disk
copy, format, edit, and protected disk utilities, all without
booting a disk first! Assembly Language utilities include
Step and Trace, an Aissembler, and more. Undetectable
by software or hardware, does not use a peripheral slot.
Extensive documentation and guide to copy protection.

Economically priced at $79.95 for prepaid orders with
check or money order. Credit card orders available for

WA

- .-
BUY 2. GET
THE THIRD ONE

WITH A COPY
OF THIS AD
600D "=2. 12 31 §

et

Rutting <dge < nterprises
43234 Ren Cen Station, Detroit, MI 48243

Coming soon...

(to a magazine near you)

COMPUTIST No. 36:

Softkeys for: Flight Simulator II v1.05, Autoduel, Critical Reading, Troll’s Tale, Robot War, General Manager, Plasmania, Telarium
Software, Kidwriter v1.0, Color Me.

Features: Screenwriter meets Flashcard, The Bus Monitor, Mousepaint for non-Apples.

Core: a character editor: The Bard’s Dressing Room

APT: Championship Lode Runner.

COMPUTIST No. 37:

Softkeys for: Under Fire, Pegasus][, Take 1 (revisited), Magic Slate, Alter Ego, Rendezvous, Quicken, Story Tree, Assembly Language
Tutor, Avalon Hill games, Dark Crystal.

Features: Playing Karateka on a //c, Track Finder, Sylk to Dif.
Core: Breaking In: tips for beginners, The DOS Alterer.
Review: Copy][Plus, 6.0.

5 FREE DISKS

With every set of 20 disks you order. You can get sets for as low as

$17.00

That’'s a total of 25 disks for as little as

68¢ a disk

These are SS/DD Namebrand, 5%,’’ floppies, 100% guaranteed, & include:
reinforced hubs, write-protect tabs, & Tyvek sleeves.

Name ID#

Send me sets at $17.00 per set.
Address Add $3 shipping and handling for the first set,
. . and $1 for each additional set.
City State Zip Foreign orders add 20% shipping and handling.
Countr Phone U.S. funds drawn on U.S. banks only.
Y~ Washington orders add 7.8% sales tax.
E“ - - - Exp. Send your orders to:
LR SoftKey Publishing
Signature _______ CP35 Tl;g,mx ‘1;2833411‘1

Most orders shipped UPS. Please use street address.

Description of Available Back Issues

34 Softkeys | Crisis Mountain | Terripin
Logo | Apple Logo II | Fishies 1.0 | SpellWorks |
Gumball | Readers’ Softkeys | Rescue at Rigel | Crazey
Mazey | Conan | Perry Mason: The Case of the
Mandarin Murder | Koronis Rift | Feature | More ROM
Running | Core | Infocom Revealed |

33 Softkeys | Word Juggler | Tink! Tonk! |
Sundog v2.0 | G.I. Joe & Lucas Film’s Eidolon |
Summer Games II | Thief | Instant Pascal | World’s
Greatest Football Game | Readers’ Sofikeys | Graphic
Adventure #1 | Sensible Grammar & Extended
Bookends | Chipwits | Hardball | King’s Quest II | The
World’s Greatest Baseball Game | Feature | How to be
the Sound Master | Core | The Mapping of Ultima IV |

32 Softkeys | Revisiting Music Construction
Set | Cubit | Baudville Software | Hartley Software |
Bridge | Early Games for Young Children | Tawala’s
Last Redoubt | Readers’ Softkeys | Print Shop
Companion | Kracking Vol II | Moebius | Mouse
Budget, Mouse Word & Mouse Desk | Adventure
Construction Set | Feature | Using Data Disks With
Microzines | Core | Super IOB v1.5 a Reprint |

3 1 Softkeys | Trivia Fever | The Original
Boston Computer Diet | Lifesaver | Synergistic
Software | Blazing Paddles | Zardax | Readers’
Softkeys | Time Zone | Tycoon | Earthly Delights |
Jingle Disk | Crystal Caverns| Karate Champ |
Feature | A Little Help With The Bard’s Tale | Core |
Black Box | Unrestricted Ampersand |

30 Softkeys | Millionaire | SSI's RDOS |
Fantavision | Spy vs. Spy | Dragonworld | Readers’
Softkeys | King’s Quest | Mastering the SAT | Easy as
ABC | Space Shuttle | The Factory | Visidex 1.1E |
Sherlock Holmes | The Bards Tale | Feature |
Increasing Your Disk Capacity | Core | Ultimaker IV,
an Ultima IV Character Editor |

29 Softkeys | Threshold | Checkers v2.1 |
Microtype | Gen. & Organic Chemistry Series | Uptown
Trivia | Murder by the Dozen | Readers’ Softkeys |
Windham’s Classics | Batter UpI Evelyn Wood’s
Dynamic Reader | Jenny of the Prairie | Learn About
Sounds in Reading | Winter Games | Feature |
Customizing the Monitor by Adding 65C02
Disassembly | Core | The Animator |

28 Softkeys | Ultima IV | Robot Odyssey |
Rendezvous | Word Attack & Classmate | Three from
Mindscape | Alphabetic Keyboarding | Hacker | Disk
Director | Lode Runner | MIDI/4 | Readers’ Sofikeys |
Algebra Series | Time is Money | Pitstop II | Apventure
to Atlantis | Feature | Capturing the Hidden Archon
Editor | Core | Fingerprint Plus: A Review | Beneath
Beyond Castle Wolfenstein (part 2) |ocooevvevvee.

27 Softkeys | Microzines 1-5 | Microzines
7-9 | Microzines (alternate method) | Phi Beta Filer |
Sword of Kadash | Readers’ Softkeys | Another Miner
204%r | Learning With Fuzzywomp | Bookends |
Apple Logo II | Murder on the Zinderneuf | Features |
Daleks: Exploring Artificial Intelligence | Making 32K
or 16K Slave Disks | Core | The Games of 1985: part

26 Softkeys | Cannonball Blitz | Instant
Recall | Gessler Spanish Software | More Stickybears |
Readers’ Softkeys | Financial Cookbook | Super
Zaxxon | Wizardry | Preschool Fun | Holy Grail |
Inca | 128K Zaxxon | Feature | ProEdit | Core | Games
Of 1985 art I | ...oovveeiiiiiiiiiiiecr e e

25 Softkeys | DB Master 4.2 | Business
Writer | Barron’s Computer SAT | Take 1 | Bank Street
Speller | Where In The World Is Carmen Sandiego |
Bank Street Writer 128K | Word Challenge | Readers’
Softkeys | Spy’s Demise | Mind Prober | BC’s Quest For
Tires | Early Games | Homeword Speller | Feature |
Adding IF THEN ELSE To Applesoft | Core | DOS To
ProDOS And Back |cccoevevviiiiiiiieeiineenn

24 Softkeys | Electronic Arts software |
Grolier software | Xyphus | F-15 Strike Eagle | Injured
Engine | Readers’ Softkeys | Mr. Robot And His Robot
Factory | Applecillin II | Alphabet Zoo | Fathoms 40 |
Story Maker | Early Games Matchmaker | Robots Of
Dawn | Feature | Essential Data Duplicator copy
parms | Core | Direct Sector Access From DOS | ..

23 Softkeys | Choplifter | Mufplot |
Flashcalc | Karateka | Newsroom | E-Z Draw |
Readers’ Softkeys | Gato | Dino Eggs | Pinball
Construction Set | TAC | The Print Shop: Graphics
Library | Death In The Caribbean | Features | Using
A.RD. To Softkey Mars Cars | How To Be The
Writemaster | Core | Wheel Of Money |

22 Softkeys | Miner 2049r | Lode Runner |
A2-PBI Pinball | Readers’ Softkeys | The Heist | Old
Ironsides | Grandma’s House | In Search of the Most
Amazing Thing | Morloc’s Tower | Marauder | Sargon
III | Features | Customized Drive Speed Control | Super
IOB version 1.5 | Core | The Macro System |

20 Softkeys | Sargon I1I | Wizardry: Proving
Grounds of the Mad Overlord and Knight of Diamonds |
Reader’ Softkeys | The Report Card V1.1 | Kidwriter |
Feature | Apple][Boot ROM Disassembly | Core | The
Graphic Grabber v3.0 | Copy II+ 5.0: A Review | The

Know-Drive: A Hardware Evaluation | An Improved
BASIC/Binary Combo |

1 9 Readers’ Softkeys | Rendezvous With
Rama | Peachtree’s Back To Basics Accounting System |
HSD Statistics Series | Arithmetickle | Arithmekicks and
Early Games for Children | Features | Double Your
ROM Space | Towards a Better F§ ROM | The Nibbler:
A Utility Program to Examine Raw Nibbles From Disk |
Core | The Games of 1984: In Review-part I |

1 Y 4 Softkeys | The Print Shop | Crossword
Magic | The Standing Stones | Beer Run | Skyfox |
Random House Disks | Features | A Tutorial For Disk
Inspection and the Use Of Super IOB | S-C Macro
Assembler Directives (reprint) | Core | The Graphic
Grabber For The Print Shop | The Lone Catalog
Arranger v1.0 Part 2 |

1 6 Softkey | Sensible Speller for ProDOS |
Sideways | Readers’ Softkeys | Rescue Raiders | Sheila |
Basic Building Blocks | Artsci Programs | Crossfire |
Feature | Secret Weapon: RAMcard | Core | The
Controller Writer | A Fix For The Beyond Castle
Wolfenlstein Softkey | The Lone Catalog Arranger
Part 1| oo

1 3 Softkeys | Laf Pak | Beyond Castle
Wolfenstein | Transylvania | The Quest | Electronic
Arts | Snooper Troops (Case 2) | DLM Software |
Learning With Leeper | TellStar | Core | CSaver: The
Advanced Way to Store Super I0B Controllers | Adding
New Commands to DOS 3.3 | Fixing ProDOS 1.0.1
BSAVE Bug | Review | Enhancing Your Apple |
Feature | Locksmith 5.0 and Locksmith Programming
Language | ..c.oooevrmeieneeeie

7 Sofikeys | Zaxxon | Mask of the Sun | Crush |
Crumble & Chomp | Snake Byte | DB Master |
Mouskattack | Features | Making Liberated Backups
That Retain Their Copy Protection | S-C Assembler:
Review | Disk Directory Designer | Core | Corefiler:
Part 1 | Upper & Lower Case Output for Zork | ...

- Softkeys | Ultima II | Witness | Prisoner I | Pest
Patrol | Adventure Tips for Ultima IT & III | Copy I
Plus PARMS Update | Feature | Ultima II Character
BAIOT | voveveeveveeeseeeeieseinsnssese s

1 Softkeys | Data Reporter | Multiplan | Zork |
Features | PARMS for Copy II Plus | No More Bugs |
APT’s for Choplifter & Cannonball Blitz | ‘Copycard’
Reviews | Replay | Crackshot | Snapshot | Wildcard |

CORE 3 . Games:

Constructing Your Own Joystick | Compiling Games |
GAME REVIEWS: Over 30 of the latest and best | Pick
Of The Pack: All-time TOP 20 games | Destructive
Forces| EAMON | Graphics Magician and
GraFORTH | Dragon Dungeon |ccccocoeviniiinn

CORE 2 . Utilites:

Dynamic Menu | High Res: Scroll Demo | GOTO
Label: Replace | Line Find | Quick Copy: Copy | ..

CORE 1 Graphics:

Memory Map | Text Graphics: Marquee | Boxes |
Jagged Scroller | Low Res: Color Character Chart |
High Res: Screen Cruncher | The UFO Factory |
Color | Vector Graphics:Shimmering Shapes | A Shape
Table Mini-Editor | Block Graphics: Arcade Quality
Graphics for BASIC Programmers | Animation |

Hardcore Computing 3 ...
HyperDOS Creator | Menu Hello | Zyphyr Wars |
Vector Graphics | Review of Bit Copiers | Boot Code
Tracing | Softkey IOB | Interview with ‘Mike’
MarkKula | .ooooveeeeiiie e

For special savings, order our
‘Core Special’
and receive all three CORE
magazines for only $10.00

Back Issues & Library Disks order form

Issue Mag Disk Both
$4.75 $9.95 $12.95
34.... OO0
33.... OO34d
32.... OO
31.... OO043
30.... OO0
29.... OO O
28.... OO 0O
27.... OO 0O
26.... OO
25.... OO4d
24.... OO
*23.. O OO3
22.... OO0 of COMPUTIST (formerly Hardcore COMPUTIST)
21.... NA L] NA are still available, though some issues (marked NA) are sold out,
20.... DO U library disks are available for ALL issues of COMPUTIST.
19.... OO 0O
18. ... NA [NA
i 850 LIBRARY DISKS
16. ... 1 O O
15.... NA [NA ‘
14. ... NA (] NA
are perfect companions jor
*13.. O OO
12.... NA [J NA
11.... N O MA "OZ\{PZ!‘ZI'LS‘Z'
10.... NA [NA
g """ :: - :: Documentation for Library Disks is in the corresponding issue.
*x7 ... l:ll:lj back i dlor i isks indi .
6..... NA O] NA Send me the back issues and/or library disks indicated:
wa... MmO Name ID#
Diiows= NA NA
Core 2. [L O Address
b - NA [] NA City State Zip
:':' = :l- g S Country Phone
ore - =
nionf
Core 3. [[[Zz® ' : : B
Computing 3 [] NA NA Signature CP35
95 laicins Send check d COMPUTIST PO Box 110846-T T. WA 98411. M d hipped
, r r to: 1 -)) t
Computing . . NA [NA Ugg sf) :I(:sa:e T:en:z':;t :dd(r,ess. Offer good whiIeO:uppIy lasts. lna ‘\:I:I,g?tlngton state: a%i! "I’.rs‘;orz;esp ?:x.
Core Special $10.00 [
(All three CORE magazines) Back Issue ‘Rates For Foreign Orders
ggﬁ\%ﬁ:a‘\;ﬁ)‘:\tz’;d(grsskai;l‘;ggzol:z FOREIGN MAGAZINE ORDERS ©00000000000000000000000000000000000
islsue and its corresponding Price for each magazine includes shipping.
disk. 1 - 2 copies 3 to 4 copies 5 or more copies
Some disks apply to more than Canada/Mexico $8.00 each..... $7.00 each..... $6.00 each.....
one issue and are shown as Other Foreign........... $14.25 each.......... $13.25 each.......... 12.25 each.....
taller boxes.
v« We have a limited supply FOREIGN DISK ORDERS 00
of these issues. Disks are $11.94 each (includes shipping). Special ‘‘Both’’ disk and magazine combinations shown
do NOT apply to Foreign orders. US funds drawn on US banks. All foreign orders sent AIR RATES.

COMPUTIST

is a monthly magazine dedicated to the
serious user of the Apple (or compatible)
computer. COMPUTIST welcomes articles
on a variety of subjects in all levels of
technical difficulty but requires accurate
data, technical competence, correct English
usage, rcadable style, and fully defined
jargon and buzzwords.

MANUSCRIPT
MECHANICS }

All manuscripts must be typed or printed
on one side of the paper. Text should be
double-spaced.

Printouts should use a non-compressed
font with both upper and lower case. A letter
quality mode is preferred, with each page
torn at the perforation only. Pages need not
be stapled together.The cover page of each
manuscript should contain the following
data:

TITLE OF WORK
FULL NAME OF AUTHOR

ADDRESS
PHONE NUMBER

Each page of the manuscript and program
listing should include the author’s name, the
title of the work, and the page number in
the upper right hand corner.

The article and any accompanying
program SHOULD BE SUBMITTED AS
A STANDARD TEXT FILE ON A DOS
3.3 DISK. Label the disk with the title of
the work and the author’s full name and
address. ON DISK, TEXT MUST BE
SINGLE-SPACED ONLY. Please identify
your editing program.

Original disks are always returned as soon
as possible. Other materials will be returned
only when adequate return packaging and
postage is enclosed. We are not responsible
for unreturned submissions. We will
guarantee the return of original commercial
disks mailed to us for verification of an
accompanying softkey.

You will be notified of the status of your
submission within 4 to 6 weeks after it is
received if the article is a softkey
accompanied by an original disk. Please
submit completed manuscripts directly: do
not query first. Previously published

material and simultaneous submissions are
not accepted.

SUBJECTS ‘

We prefer material on these topics:

1) Original program/article combinations
2) General articles (Apple computing)

3) Softkeys

4) Advanced Playing Techniques (APT's)
5) Hardware modifications

6) DOS modifications

7) Product reviews (hardware and software)
8) Utilities

9) Bit Copy Parameters

WRITING
YOUR ARTICLE

Observe the following points of style:

A. Always assume that your reader is a
novice and explain all buzzwords and
technical jargon. Pay special attention to
grammar and punctuation; we require
technical competence but also good,
readable style.

B. Whenever appropriate, a list of hardware
and software requirements should be
included at the beginning of the manuscript.
When published, this list will be offset from
the main text.

C. Include the name and address of the
manufacturer and the price when a
commercial program is mentioned. This is
of particular importance in PRODUCT
REVIEWS.

D. When submitting programs, first
introduce the purpose of the program and
features of special interest. Include
background information describing its use.
Tips for advanced uses, program
modifications, and utilities can also be
included. Avoid long print statements and
use TABs instead of spaces.

Remember: A beginner should be able to

type the program with ease.

E. A PROGRAM is not accepted for
publication without an accompanying
article. These articles, as well as articles on
hardware and DOS modifications MUST
summarize the action of the main routines
and include a fully remarked listing.

F. GENERAL ARTICLES may include
advanced tips. tutorials, and explorations of
a particular aspect of Apple computing.

G. SOFTKEYS of any length are acceptable
and must contain detailed step-by-step
procedures. For each softkey, first introduce
the locking technique used and then give
precise steps to unlock the copy-protected
program. Number each step whenever
possible.-We accept articles which explain
locking techniques used in several programs
published by the same company.

H. When altering game programs, the
changes made are sometimes extensive
enough to warrant the title of ADVANCED
PLAYING TECHNIQUE (APT). APTs can
deal with alterations to a program, deleting
annoying sounds, acquiring more points in
play and avoiding hazards. Again, provide
step-by-step instructions to complete each
APT and explain each step’s function.
APT’s of 100 words or more are preferred.

AUTHOR’S RIGHTS

Each article is published under the
author’s byline. As a rule, all rights, as well
as one-time reprint rights are purchased.
Purchase of exclusive rights to programs is
required; however, alternate arrangements
may be made with individual authors
depending on the merit of the contribution.

PAYMENTS

COMPUTIST pays upon publication.
Rate of payment depends on the amount of
editing required and the length of the article.
Payment ranges from $20 to $50 per typeset
page for an article. We also pay $10 to $20
for short softkeys and APT’s. A fully
explained softkey accompanied by the
commercial disk for verification may earn
up to $50 per typeset page.

Please mail your submissions to:

COMPUTIST
Editorial Department
PO Box 110846-T
Tacoma, WA 98411

big deal.

We really mean it. This is truly a big deal. We want to sell you a book or two. Need we say more?

The Book
Of Softkevys
Volume

is here.

At long last, The second volume in our series of compilations is ready. Once
again, we have combined several issues of (Hardcore) COMPUTIST into one compact
book. Volume II of the Book Of Softkeys contains articles from issues 6 through 10.

The Big Deal is, Volume II has a lower price than Volume I originally had. Not
only that, but the price of Volume I has been massively reduced. The two books
make an economical alternative to those rare (and unavailable) back issues of

Hardcore COMPUTIST.

contains softkeys for: Apple Cider Spider | Apple Logo | Arcade
Machine | The Artist | Bank Street Writer | Cannonball Blitz | Canyon
Climber | Caverns of Freitag | Crush, Crumble & Chomp | Data Factory
5.0 | DB Master | The Dic*tion*ary | Essential Data Duplicator I & III |
Gold Rush | Krell Logo | Legacy of Llylgamyn | Mask Of The Sun | Minit
Man | Mouskattack% Music Construction Set | Oil’s Well | Pandora’s
Box | Robotron | Sammy Lightfoot | Screenwriter II v2.2 | Sensible
Speller 4.0, 4.0c, 4.1c | the Spy Strikes Back | Time Zone v1.1 | Visible
Computer: 6502 | Visidex | Visiterm | Zaxxon | Hayden Software | Sierra
Online Software | PLUS the complete listing of the ultimate cracking
program...Super IOB 1.5 | and more!

contains softkeys for: Akalabeth | Ampermagic | Apple Galaxian | Aztec
Bag of Tricks | Bill Budge’s Trilogy | Buzzard Bait | Cannonball Blitz
Casino | Data Reporter | Deadline | Disk Organizer II | Egbert II
Communications Disk | Hard Hat Mack | Home Accountant
Homeword | Lancaster | Magic Window II | Multi-disk Catalog
Multiplan | Pest Patrol | Prisoner II | Samm?' Lightfoot | Screen Writer
I1 | Sneakers | Spy’s Demise | Starcross | Suspended | Ultima II
Visifile | Visiplot | Visitrend | Witness | Wizardry | Zork I | Zork II
Zork III | PLUS how-to articles and program listings of need-to-have
programs used to make unprotected backups.

To Order: Send $17.95 + Shipping and Handling for Volume |l and/or $12.95 + S&H for Volume |. Shipping and handling is $2.00
per book for US orders, $5.00 per book for foreign orders. U.S. funds drawn on U.S. banks only. Washington State orders add 7.8%

sales tax. Send your orders to: SoftKey Publishing,

PO Box 110937-BK, Tacoma, WA 98411

