
■ >7 ••'>,.• ' „K

W i l l *

> J C O M P U T I S T
y ^ * ; * 4 > K ' K i y r ^ J v r • < r i ' X ^ y j \ f ' I ' ^ ^ w

i

^■i>;.v»fi!

M
J/

Sof tkeys For:

Cyc lod
A l te rna te Rea l i t y
B o u l d e r D a s h I & I I
T h e O t h e r S i d e
G a t e V I . 3
W i l d e r n e s s
G o l f ' s B e s t
H a r d H a t M a c k

C o r e :

A p p a v a r e x

F e a t u r e :

T h e E n h a n c e d &
U n e n h a n c e d l i e

C a n a d a / M e x i c o $ 7 . 0 0
Al l Others $13.25

• i

. , \ - . 1 1 . V i i

ww. ' ff lJ®.. . >.- . - : i .VL. i . "

C O M P U T I S T
P O B o x 11 0 8 4 6 - T

Tacoma, WA 98411

B U L K R AT E
U.S. Postage

P A I D
Ta c o m a , WA

P e r m i t N o . 2 6 9

C o p i n g W i t h C O M P U T I S T
Welcome to COMPUTIST, a publ icat ion

devoted to the serious user of Apple][and
Apple][compatible computers. Our magazine
contains information you are not likely to fmd
in any of the other major journals dedicated to
the Apple market.

New readers are advised to read this page
carefully to avoid frustration when attempting
to follow a softkey or when entering the
programs printed in this issue.

■ What Is A Softkey Anyway? Softkey is
a term which we coined to describe a procedure
that removes, or at least circumvents, any copy
protection on a particular disk. Once a softkey
procedure has been performed, the resulting
disk can usually be copied by the use of Apple's
COPYA program (on the DOS 3.3 System
Master Disk).
■ Commands And Controls: In any article
appearing in COMPUTIST, commands which
a reader is required to perform are set apart by
being in boldface and indented;

P R # 6

The I RETURN I key must be pressed at the end of
e v e r y s u c h c o m m a n d u n l e s s o t h e r w i s e
specified.

Control characters are specially boxed:

6 B P 1

Press [E. Next, place one finger on Ictrl|
and press [P]. Remember to enter this
command line by pressing I return |.
■ Requirements: COMPUTIST programs
and softkey s require one of the Apple][series
of computers and a disk drive with DOS 3.3.
These and other special needs are listed at the
beginning of the article under "Requirements".
■ S o f t w a r e R e c o m m e n d a t i o n s :

1) Applesoft Program Editor such as Global
Program Line Editor (GPLE).

2) Sector Editor such as DiskEdit (from the
Book of Softkeys vol I) or ZAP from Bag of
T r i c k s .

3) Disk Search Utility such as The
Inspector, The CIA or The CORE Disk
Searcher (from the Book of Softkeys vol 11).

4} Assembler such as the S-C Assembler
from S-C software or Merlin/Big Mac.

5) Bit Copy Program such as Copy][Plus,
Locksmith or The Essential Data Duplicator

6) Text Editor (that produces normal
sequential text files) such as Applewriter II,
Magic Window II or Screenwriter II.

COPYA, FID and MUFFIN from the DOS
3.3 System Master Disk are also useful.
■ Super lOB: This powerful deprotection
utility (COMPUTIST 32) and its various
controllers are used in many softkeys. This
utility is now available on each Super lOB
Co l lec t i on d i sk .

■ RESET Into The Monitor: Softkeys
occasionally require the user to stop the
execution of a copy-protected program and
directly enter the Apple's system monitor.
Check the following list to see what hardware
you will need to obtain this ability.

Apple][Plus - Apple //e - Apple compatibles:
1) Place an Integer BASIC ROM card in one
of the Apple slots. 2) Use a non-maskable
interrupt (NMI) card such as Replay or
W i l d c a r d .

Apple][Plus - Apple compatibles: 1) Install
a n F 8 R O M w i t h a m o d i fi e d R E S E T v e c t o r o n
the computer's motherboard as detailed in the
"Modified ROM's" ar t ic le (COMPUTIST 6
or Book Of Softkeys HI) or the "Dual ROM's"
article (COMPUTIST 19).

Apple He - Apple He: Install a modified CD
ROM on the computer's motherboard. Cutting
Edge Ent. (Box 43234 Ren Cen Station-HC;
Detroit, MI 48243) sells a hardware device
that will give you this important ability but it
will void an Apple //c warranty.
■ Recommended Literatime: The Apple][
R e f e r e n c e M a n u a l a n d D O S 3 . 3 m a n u a l a r e
musts for any serious Apple user. Other helpful
books include: Beneath Apple DOS, Don Worth
and Pieter Lechner, Quality Software; Assembly
Language For The Applesoft Programmer, Roy
Meyers and C.W. Finley, Addison Wesley; and
What's Where In The Apple, William Lubert,
M i c r o I n k .

■ Keying In Applesoft Programs: BASIC
programs are printed in COMPUTIST in a
format that is designed to minimize errors for
readers who key in these programs. If you type:

1 0 H O M E : R E M C L E A R S C R E E N
T h e L I S T w i l l l o o k l i k e :

1 0 H O M E : R E M C L E A R S C R E E N
because Applesoft inserts spaces into a program
listing before and after every command word
or mathematical operator. These spaces usually
don't pose a problem except in line numbers
w h i c h c o n t a i n R E M o r D A T A c o m m a n d s .
There are two types of spaces: those that have
to be keyed and those that don't. Spaces that
must be keyed in appear in COMPUTIST as
delta characters (^). All other spaces are there
for easier reading. NOTE: If you want your
checksums (See "Computing Checksums"
section) to match up, you must only key in
(") spaces after DATA statements.
■ Keying In Hexdumps: Machine language
programs are printed in COMPUTIST as both
source code and hexdumps. Hexdumps are the
shortest and easiest format to type in. You must
fi r s t e n t e r t h e m o n i t o r :

C A L L - 1 5 1

Key in the hexdump exacdy as it appears in
the magazine, ignoring the four-digit checksum
at the end of each line (a "$" and four digits).
A beep means you have typed something that
the monitor didn't understand and must,
therefore, retype that line.

When finished, return to BASIC with:

E 0 0 3 G

BSAVE the program with the correct filename,
address and length parameters given in the
ar t i c l e .

■ Keying In Source Code The source code
is printed to help expleiin a program's operation.
To key it in, you will need the S-C Assembler.

Without this assembler, you wi l l have to
translate pieces of the source code into
something your assembler will understand. A
table of S-C Assembler directives appears in
C O M P U T I S T 1 7 .

■ Computing Checksums Checksums are
four-digit hexadecimal numbers which tell if
you keyed a program exactly as it appears in
C O M P U T I S T. T h e r e a r e t w o t y p e s o f
checksums: one created by the CHECKBIN
program (for machine language programs) and
the other created by the CHECKSOFT program
(for BASIC programs). Both appeared in
C O M P U T I S T 1 a n d T h e B e s t o f H a r d c o r e

Computing. An update to CHECKSOFT
appeared in COMPUTIST 18. If the published
checksums do not match those created by your
c o m p u t e r, t h e n y o u t y p e d t h e p r o g r a m
incorrectly. The line where the first checksum
di ffers has an er ror.
■ C H E C K S O F T I n s t r u c t i o n s :

LOAD filename
B R U N C H E C K S O F T

Get the checksums with: & I return | and correct
the program where the checksums differ.
■ C H E C K B I N I n s t r u c t i o n s :

C A L L - 1 5 1
BLOAD program filefiame

Install CHECKBIN at an out of the way place

B R U N C H E C K B I N , A $ 6 0 0 0

Get the checksums by typing the starting
address, a period and ending address of the file
followed by a ES [REtM] .

XXX.XXX EY)
Correct the lines at which the checksums differ.

s

You have a LEGAL RIGHT
to an unlocked backup copy

Our editorial policy is that we do NOT condone
software piracy, but we do believe that users are entitled
to backup commercial disks they have purchased. In
addition to the security of a backup disk, the removal
of copy-protection gives the user the option of
modifying programs to meet his or her needs.

Furthermore, the copyright laws guarantee your
right to such a DEPROTECTED backup copy:

..."It is not an infringement for the owner of a copy of a
computer program to make or authorize the making of another
copy or adaptation of that computer program provided:

1) that such a new copy or adaptation is created as an essential
step in the utilization of the computer program in conjunction with
a machine and that it is used in no other manner, or

2) that such new copy or adaptation is for archival purposes
only and that all archival copies are destroyed in the event that
continued possession of the computer program should cease to
be rightful.

Any exact copies prepared in accordance with the provisions
of this section may be leased, sold, or otherwise transferred, along
with the copy from which such copies were prepared, only as part
of the lease, sale, or other transfer of all rights in the program.
Adaptations so prepared may be transferred only with the
authorization of the copyright owner."

United Stales Code title 17. ^ 17 f 17 USC 117)

HAPPr HOUDAIS! HAPPT HOLTOAIS!
In light of the upcoming holiday season, COMPUTIST has decided to run a series of specials for our readers.
The following pages contain a set of specials that were conceived with our special readership in mind. To take
advantage of any of these offers, please refer to the special code in each box when ordering. Please hurry though,
offers are only good while supplies last and expire on December 31, 1986.

FREE co(or-co<kd Wkary case
with the purchase of 10 blank floppy disks.

DISK PRICES (includes shipping)
U.S. $10,

Canada & Mexico $11,
Other Foreign $15

Includes tyvek sleeves, hub rings,
labels, and write-protect tabs

SAVE MUCH AS $19.75
on back issues when purchased in quantities of 3.

Sale price U.S./Canada/Mexico $10
Sale price, other foreign $20

R e g u l a r p r i c e s $ 4 . 7 5 a n d $ 1 3 . 2 5 , r e s p e c t i u e l i ^ .

SAVE $19.75 on UBraiy (fisfo
^et a FREE color-coded case

with the purchase of 5 library disks.
That means, you get 5 library disks and a free color-coded case for only $30.00.

(Foreign orders add $5.00 shipping & handling)

Regular pr ices are U.S. /Canada/Mexico $9.95 per d isk
and other foreign $11.94 per disk.

SAVE $5/$S
Save $5 on the price of Volume II of the

Book of Softkeys, or save $8 on the total price
of both volume 1 & 2 when purchased together.

S a l e P r i c e s : Vo l I I $ 1 2 . 9 5 , B O T H $ 2 2 . 9 0
Regular Prices: Vol U $17.95, Vol II $30.90

Sh ipp ing - US/Canada /Mex ico $2 per book
Shipping - other foreign $5 per book

SAVE $3 on every
back issue & (ksk combo.

With this special only 9.95 per set.
(That's like getting a free back issue with every library disk.)

Normal retail price $12.95 per set.

Foreign shipping add $3.00.

Get a FREE Core SpeciaC
o r F R E E C O M P U T I S T

T - s f t i r t
with any total order of $100.00 or more.

Yes 1 want to take advantage of your special Holiday offers. Enclosed is U.S. funds (drawn on U.S. bank) to cover my order.

Please send me sets of 10 floppy disks. I understand that I will get a FREE color coded disk case with each set.
Sale Price: U.S. $10, Canada/Mexico $11, Other Foreign $15 per set.

I want to take advantage of the Book of Softkeys special prices.
□ Please send me volume II of the book of softkeys. Enclosed is 12.95 plus shipping & handling. (U. S., Canada &

Mexico add $2. Other Foreign add $5).
□ Please send me Both volume I and volume II of the book of softkeys. Enclosed is $22.90 plus shipping & handling.

(U.S., Canada & Mexico add $4. Other Foreign add $10).

For remaining holiday sales, please consult 'Back Issues and Library Disks' order form on page 32.
Send orders to : COMPUTIST PO Box 110846-T Tacoma, WA 98411

N a m e I D ^

A d d r e s s

City
Country . P h o n e

Signature. . C P 3 8
U.S . f unds d rawm on U .S . bank . I n Wash ing ton add 7 .8% sa les tax . Mos t o rde rs sh ipped UPS so p lease use s t ree t add ress . O f fe r good wh i l e supp l i es l as t .

a n n o u n c i n g n e w r a t e s !
YES! COMPUTIST has DRopppj.
its annual subscription rate.

U.S. Domestic save $8 per year
U. S. First Class save $3 per year
Canada and Mexico save $23 per year
All other foreign save $45 per year

Additionally, COMPUTIST has
incorporated a combination libarary
disk and first class subscription rate

to save you even more.
W i t h t h i s n e w ' C O M B O '

subscription, you will receive each
monthly issue AND it's

corresponding library disk for as
much as 43% off the individual
rate. Combination subscriptions
are sent U.S. First Class mai l .

If you have at least 3 issues left on
your current subscription, you can

upgrade to this special offer.

Yes I want to take advantage of the big money saving offer and subscribe
to your fine publication. Enclosed are U.S. Funds (drawn on a U.S. bank)
for a 12 issue subscription.
□ N e w S u b s c r i b e r □ P l e a s e r e n e w m y s u b s c r i p t i o n

□ U.S. $32 □ U.S. First Class/Canada/Mexico $45 □ Other Foreign $75

Combination magazine and corresponding disk subscriptions
□ U . S . / C a n a d a / M e x i c o $ 1 0 0 □ O t h e r F o r e i g n $ 1 4 0
To upgrade your subscription to a combo subscription, U.S./Canada/Mexico
send $5.50 and other Foreign send $6.50 per remaining issue. You must have
at least 3 issues remaining to take advantage of this upgrade offer.

N a m e I D #
Address

C i t y S t a t e Z i p
C o u n t r y P h o n e
i S . ^ - - - F x p
S i g n a t u r e C P 3 8
U.S. Funds drawn on U.S. bank. Subscription will not commence until funds
are received. Send orders to: COMPUTIST PC Box 110846-T Tacoma, WA 98411

Big Deal! We really mean it. This is truly a big deal. We want to sell you a book or two. ISeed we say more?
T h e B o o k O f S o f t k e y s

Vo lume 1 ($12 .95)
contains softkeys for: Akalabeth | Ampermagic 1 Apple Galaxian
Aztec I Bag of Tricks | Bill Budge's Trilogy | Buzzard Bait
Cannonball Blitz 1 Casino | Data Reporter Deadline | Disk
Organizer II | Egbert II Communications Disk | Hard Hat Mack
Home Accountant 1 Homeword | Lancaster | Magic Window II
Multi-disk Catalog | Multipian | Pest Patrol | Prisoner II | Sammy
Lightfoot I Screen Writer II | Sneakers | Spy's Demise | Starcross
Suspended i Ultima II \ Visifile i Visiplot i Visitrend | Witness
Wizardry | Zork I | Zork II | Zork III | PLUS how-to articles and
program listings of need-to-have programs used to make unprotected
backups.

Vo l u m e I I ($ 1 7 . 9 5)
contains softkeys for: Apple Cider Spider | Apple Logo 1 Arcade
Machine | The Artist | Bank Street Writer | Cannonball Blitz | Canyon
Climber | Caverns of Freitag | Cmsh, Crumble & Chomp 1 Data
Factory 5.0 | DB Master | The Dic*tion*ary | Essential Data DuplicatorI & III I Gold Rush I Krell Logo | Legacy of Llylgamyn | Mask Of
The Sun | Minit Man | Mouskattack | Music Construction Set | Oil's
Well I Pandora's Box | Robotron | Sammy Lightfoot | Screenwriter
n v2.2 I Sensible Speller 4.0, 4.0c, 4.1c i the Spy Strikes Back | Time
Zone vl.l I Visible Computer: 6502 | Visidex [Visiterm | Zaxxon |
Hayden Software 1 Sierra Online Software | PLUS the complete listing
of the ultimate cracking program...Super lOB 1.5 | and more!

To Order: Send $17.95 -t- Shipping and Handling for Volume II and/or $12.95 + S&H for Volume I. Shipping and handling is
$2.00 per book for US orders, $5.00 per book for foreign orders. U.S. funds drawn on U.S. banks only. Washington State orders
add 7.8% sales tax. Send your orders to: SoftKey Publishing, PO Box 1I0937-BK, Tacoma, WA 98411

(t S U R V I M f t L O D U E N T U R E
G l o b a l E x p l o r e r C o u n t r j j C O M P U T I S T

Copyright li 1984 Titan Software
P u b l i s h e d b y E l e c t r i c T r a n s i t

T h i s m o n t h ' s c o v e r :

Graphics from Bantam Electronic's "I, Damiano"

Address all advertising inquiries to COMPUTiST, Advertising
Department, PO Box 110816, Tacoma, WA 98411. Mali
manuscripts or requests for Writer's Guides to COIulPUTIST, PO
B o x 11 0 8 4 6 - K , Ta c o m a , WA 9 8 4 11 .

Unsolicited manuscripts are assumed to be submitted for
publication at our standard rates of payment. SoftKey publishing
purchases ail and exclusive rights. For more information on
submitting manuscripts, see our writer's guide.

Entire contents copyright 1986 by SoftKey Publishing. Ail
rights reserved. Copying done for other than personal or internal
reference (without express written permission from the publisher)
is prohibited.

The editorial staff assumes no liability or responsibility for the
products advertised in the magazine. Any opinions expressed
by the authors are not necessarily those of COfvlPUTiST
magazine or SoftKey Publishing.

Apple usually refers to an Apple 1| computer and is a trademark
of Apple Computers, inc.

SUBSCRIPTIONS; Rates {for 12 issues): U.S. $32, U.S. 1st
Class, Canada & fviexico $45, Foreign $75. Direct inquiries to:
COMPUTiST, Subscription Department, PO Box H0846 T,
Tacoma, WA 984U. Please include address label with
correspondence.
DOMESTIC DEALER RATES; Call (206) 474-5750 for more
i n f o r m a t i o n .

Change Of Address; Please allow 4 weeks for change of
address to take effect. On postal form 3576 supply your new
address and your most recent address label. Issues missed due
to non-receipt of change of address may be acquired at the
regular back issue rate.

Issue 38 D e c e m b e r 1 9 8 6

Publisher/Editor: Charles R. Haight Managing Editor: Ray Darrah
Technical Editor: Robert Knowles Circulation: Debbie Holloway

Advertising: (206) 474-5750 Printing: Valco Graphics Inc., Seattle. WA
COMPUTIST is published monthly by SoftKey Publishing, 5233 S. Washington, Tacoma. WA 98409

Phone: (206) 474-5750

s o f t k e y s :

1 4 C y c l o d
by Felix LeChat

19 A l te rna te Rea l i t y
by Stephen Lau

2 4 B o u l d e r D a s h 1 d e I I
by Randy R. Abel

25 Hard Hat Mack (Revisited)
by Brian Troha

2 6 T h e O t h e r S i d e
by Dick Meikle and Jim McGreevy

f e a t u r e :

1 0 T h e E n h a n c e d / U n e n h a n c e d / / e
Have you ever wished for a moment (perhaps when running some old software) that your
Apple //e wasn't enhanced? With this modification to your computer, you can quickly switch
between enhanced and unenhanced versions of the Apple //e. by Wes Felty

28 Looking into Flight Simulator's DOS
Following our softkey for Flight Simulator v 1.05, COMPUTIST presents an in depth look
at the DOS behind the program, by Stephen L. Favor

c o r e :

1 6 A p p a v a r e x
This article details a how Applesoft program text is stored in memory and presents a program
that documents in what lines of a program variables are used, by Elwood J. C. Kureth

20 Instal l ing a RAM disk into DOS 3.3
If you have a lie with extended 80 column card, you can now have the super speed of a
RAM disk with DOS 3.3. by Robert Knowles

d e p a r t m e n t s :

4 I n p u t
6 M o s t W a n t e d L i s t
7 R e a d e r s ' S o f t k e y S t C o p y E x c h a n g e
MicroProse's F-15 Strike Eagle by John Howard, Broderbund's Championship Lode
Runner by Sandy Eubanks, Spectrum Holobyte's Gato VI.3 by Robert Muir, Bantam's
I, Damiano by Larry Rando, Intuit's Quicken by Greg Robinson, Electric Transit's
Wilderness by Charles Taylor, One Step's GolFs Best by John Howard

m

P l e a s e a d d r e s s l e t t e r s t o :

C O M P U T I S T
Editorial Department

P O B o x 1 1 0 8 4 6 - K
Tacoma, WA 98411

Include your name, address and
phone number.

Correspondence appearing in the
INPUT section may be edited for
clarity and space requirements. In
addi t ion, because of the great
number o f le t te rs that we rece ive and
the small size of our staff, a response
to each letter is not guaranteed.

O u r t e c h n i c a l s t a f f i s a v a i l a b l e f o r

phone calls between 1:30 pm and
4:30 pm (PST) on Tuesdays and
Thursdays only.

O p i n i o n s e x p r e s s e d a r e n o t
necessarily those of COMPUTIST or
SoftKey Publishing

S i l e n t S e r v i c e N e w s

I o n l y h a v e o n e d i s k . B u s i n e s s o r
Recreational, that has resisted all efforts to back
up. Including the use of COMPUTIST articles,
EDD III, COPY][Plus, and a couple of older
copy disks. This one is Silent Service by
Microprose. A starting place is a deprotection
method that appeared in COMPUTIST that
partially works. However the deprotected
version will run at a different level than you
select. Even worse, a copy will always cause
the submarine to hit an enemy mine and then
sink. Having played many times on the original
without ever hitting an enemy mine I can only
conclude that the program counts cycles or
keypresses on the copy. (Or perhaps my Apple
just dislikes the copy.)

A quick way to tell is to play selection 2
under Convoy Actions, sink a couple of the
ships and try to escape. If the copy is
unsuccessful you will hit the mine. If you are
playing the original disk the scenario will end
by giving the readout of your accomplishments.
(Assuming, of course that the destroyer does
not send you to the bottom)

Sheldon M. Atterbury
S i e r r a M a d r e , C A

Arcade Boot Camp Softkey

Requirements:
Arcade Boot Camp
T h e S e n i o r P r o m
A b l a n k d i s k

If you (for some strange reason or another)
don't have the Senior Prom you will need to
use a copy program that will allow modification
of Address and Data Prolog bytes for the
copying process.

Penguin software was very kind to provide
Softdisk (a monthly magazine on disk) with the
privilege to put a 1984 program (a fine quality
commercial one at that!) called Arcade Boot
Camp with the other programs and information
they provide monthly.

I was almost overjoyed.

The Joy I felt, however, was nothing
compared to the Joy I felt when I unleased the
power of The Senior Prom.

H o w I d i d i t :

The first thing I did with Arcade Boot Camp
was to find out how the data on the disk was

perverted. I used the sector editor in the Senior
Prom, called Snoopy and the Doctor (SAND).
Pressing "N" does a nibble read and gives me
a hex output of exactly what is on the disk. I
found that the first Address Prolog byte was
changed to $D4 on every odd numbered track
(ie: 1, 3, 5, 7, etc.). The second thing to do
was to simply copy every other (odd) track with
the first address Prolog byte changed to $D4.
Then copy all even tracks with normal Prolog
bytes. This task is extremely simple with The
Senior Prom's "Alter Prolog Bytes" function.
It can also be done with COPY A, Super lOB,
a n d s o f o r t h .

After I did this, real izing by the (now
unusual) appearance of the Applesoft prompt.
This means Applesoft is being used (usually,
but now rarely) and as well DOS 3.3! As it turns
out, the catalog sector is at track $11 and the
VTOC is normal. So all that this disk needs now
is good old DOS 3.3 copied to tracks $00-$02.
A n d i t w o r k s ! !

With the above information and as well,
information from past COMPUTIST issues it
is very easy to copy Arcade Boot Camp.

J o h n E i n s t e i n

Anchorage, AK

Hi tchhiker Tip

First, I would like to congratulate you on an
excellent magazine! I started my subscription
in December and only have 2 issues left. My
budget is at zero right now and I hope I find
some way to save up some money and renew
my subscription soon. Keep up the good work!

I also have one more thing to say, (unrelated,
but useful) . In Hitchhiker 's Guide to the
Galaxy, after you have gotten the Nutrimat-
Computer Interface, don't hook it up until you
hook up the Improbability drive to the console
by plugging the large plug into the large
recepticle. After that, go hook up the Interface
to the Nutrimat, (you have to take out the old
board first), activate it, run up to the bridge,
and wait until Eddie announces that the ship is
going to be destroyed then activate the drive.
If anyone can help me after that point, please
w r i t e t o :

C h r i s W o o d
1 2 2 0 S . S i x t h S t

Rock ford , IL 61109

O n U l t i m a i n l a n d E d i t o r . . .

I have a couple of suggestions for the Ultima
TV Ma in l and Ed i t o r you p r i n t ed i n
C O M P U T I S T N o . 3 3 .

• To make the mountains really stand out from
the rest of the mainland, add a ";POKE
947,42" to the end of line #110. This turns
them inverse on the screen. When adding
mountains using this option, the mountain will
be a normal asterisk until you scroll it off &
back on the screen again. It will then be inverse.

• It might be an idea to show the readers how
to customize the program so that if they wanted
to be able to add things to the surface that are
currently not available, they could. (For
example: boats, horses, stone pillars, etc.)

Secondly, for those folks who have
MicroProse's Nato Commander, here is a
short softkey for it (I haven't had the time
recently to do a proper writeup).
1) Use the Locksmith fast copy program to copy
the original onto a blank. Any copy program
that can ignore bad tracks will work fine. By
the way, this procedure will only work if Track
$06 is the "bad" track.

2) Get out your favorite sector editor and make
the following changes to the copy;

4 C O M P U T I S T N o . 3 8

m

TRACK
504

SECTOR
$04

$ 0 4 $ 0 4
$ 0 4 $ 0 4

BYTE
$57-68
$6B-6C

$70

F R O M T O
B0 06 18 EA
05 2E C9 05
F 0 D B

Write protect the backup (for safety's sake) and
hide the original.

J im S . Har t
J a c k s o n v i l l e , N C

Mr. Hart: Thank you for your suggestions
on Ultimainland Editor. The Bug you mentioned
(e d i t e d f r o m t h i s l e t t e r) a p p e a r e d i n
C O M P U T I S T N o . 3 7 .

S o m e A P T ' s

I just received COMPUTIST for the first
time and thought it was great, and I will stop
subscribing to some other magazines to get
yours. While I was reading Input, I saw an APT
for Conan, by Kenny Khoo (COMPUTIST No.
32) and I tried it but it didn't work.

I do have a different one for Conan. When

you get to the third screen, go down the ladder,
but be careful you don't get eaten by the ants,
and get the elevator or whatever it is to the top
level. When you get there move over till you
get near the tree and wait for the Avian Ally
to come. It looks like a bird and if you jump
and hit it, you will get an extra life. This only
works once. Also on the fourth screen you get
the key, a lot of swords, and an extra gem. This
will be helpful for the next screen.

I also have one for Miner 2049er. Before you
start playing the computer asks you how many
players. Type in "#" and then the level number
you want to be on. You can only do this with
one player. In Hard Hat Mack do the same thing
except don't type in " # ", just the level number.

Here's one for Sea Dragon. Before you start
the game just hit lEEl.TI and you will have 9999
a i r i n s t e a d o f t h e u s u a l 6 0 0 0 .

Phillip Lai
Lincoln, RI

A D i f f e r e n t F a n t a v i s i o n

Enclosed you will find a check for a
subscription to the Best Apple magazine I have
ever read. I normally buy your magazine at the
newstand but after reading about your
circulation problem I decided to subscribe.

(Incidentally, one touches my COMPUTIST
under penalty of severe bodily harm.)

Now down to the major reason for this letter.
After purchasing a copy of Fantavision I
immediately went to COMPUTIST No. 30 for
Mike Saul's softkey. I followed all the
directions for creating FVSTUFF, typed in the
controller, started it up, and it bombed while
trying to read the first sector. On examination
of the disk with a nibble editor I found that the
epilog marks on my copy were not the same
as his. In addition, the epilog marks on the
"authorized" copy ($DE $FF for address, SDE
$AA for data) were different than the epilog
marks on the original disk ($FF $FF for address
and data). To copy the original disk I had to
change line 1130 in the controller to read:

1130 DATA 255,255,255,255

To copy the "authorized" backup line 1130 had
to be changed to;

1130 DATA 222,255,222,170

The rest of the softkey went like clockwork.
A p p a r e n t l y, B r o d e r b u n d i n s t a l l e d m i n o r
differences in several of their Fantavision disks.

I would venture to say that if my copy is
different from Mike Saul's, then there are
probably more out there with different marks
yet. I suggest that if you have trouble with the
softkey, boot up a nibble editor and see what
epilog marks you have got.

Thanks for the great magazine and keep the
softkeys coming.

J o s e A . M o n t a n o

Albuquerque, NM

M o r e o n S S I R D O S

Mr. McConne l l ' s a r t i c le abou t SSI ' s RDOS
was both thorough and quite interesting. Since
he invites for additional information regarding
this topic, I'd like to contribute the following:
1) SSI has recently been using a fourth type of
secondary protection. I've encountered this in
t w o 1 9 8 5 r e l e a s e s - B a t t l e o f A n t i e t a m a n d
Battle Group. The protection involves what is
essentially a nibble count of track 0.

In Battle of Antietam, it can be found in side
2, track 22, sector 2, beginning at byte 04. It
goes under a filename of "J". In Battle Group,
it can be found in side 1, track 22. sector 4,
also at byte 04. It goes under a filename of
"Arsenal". In other software, if the same
routine is used, it can be found by searching
for these bytes: CE 07 02 EF 07 02. Some of

your readers will recognize this as typical self
modi fy ing code. They would be ent i re ly
correct; and that is why the routine is a little
hard to find if you don't know what to look for.

It can be defeated by editing byte 04 of the
sector from CE to 60 (an RTS). Meanwhile,
the Qwerty file is still in the disk, but the
protection routine is disabled. It's unnecessary
to make the edits described in your article;
perhaps the file had been left in the disk to throw
off those who aren't aware that SSI had been

using a new secondary protection.
2) I've also seen two recent releases, apparently
produced by SSI jointly with a certain LOW
Software, written in 16 sectors, and their
protection is very light. These are Panzer
Grenadier and NAM. The first byte of their
address prologue alternates between D5 (on
odd-numbered tracks) and D4 (on even tracks),
very much like the Penguin format. The address
epilog is also not normal. But all other marks
a r e s t a n d a r d .

This can be cracked using COPY A. After
running COPYA, reset first, go into monitor
with a CALL - 151, and enter:

B 9 5 4 : 4 A 4 9 6 A D 0 E F
B 9 9 3 : 0 0
B 9 9 B : 0 0 F 0

Then restart the COPYA by entering RUN
80, and you're off! The normalized copy should
run without need of any further edits.

3) When the skew of the RDOS 3.3 disk is
changed to "ascending 01", the skew of track
0 should not be changed from ("descending
02"). The boot will be faster.

4) In creating the RDOS 3.3, shouldn't the
changes listed in your article include 7CCD:BF
N 7 C D 1 : B F ?

F r a n c i s c o V i l l a r o m a n

Philippines

The Jenny Scandal

In COMPUTIST No. 29 Phil Pattengale
suggested using the swap controller to deprotect
Jenny of the Prarie. Unfortunately, more was
needed on my disk.

After using the swap controller, my disk
would crash right after the title screen. Using
my Wildcard to enter the monitor at the point
of the crash, I found the following interesting
c o d e .

4AF9:4C F9 4A JMP $4AF9
Now I'm no machine language wizard, but

even I can see an infinite loop that's this
o b v i o u s .

C O M P U T I S T N o . 3 8 5

t » M *
I then just scanned the disk for those three

bytes and found them at track $1A, sector 01,
byte C8.1 then changed the F9 to FC to bypass
the infinite loop and I had a perfectly working
c o p y .

Gregory L. Moor, M.D.
F P O N e w Yo r k , N Y

Spy's Demise APT's

Loca t ion $60AB ho lds the number o f men
the game is initialized with. You can change
this to any value less than $7F. Either load,
change, and save the appropriate file or search
the disk for the bytes $A9 $05 $85 $27 $85 $17.
Change the second byte in this sequence to the
number of men you would like.

Location $17 contains the number of men left
during actual play. Do a NMI and change this
l o c a t i o n i f y o u s u d d e n l y fi n d y o u r s e l f
shorthanded. Again, please respect the $7F
l i m i t .

By the way, the Senior Prom is a hacker's
wet dream. Any aspiring Cracking Captain
should be advised to beg, borrow, or pawn their
grandmother for one of these.

D a v i d T o d d

Cambridge, MD

Boxed in the nex t co lumn i s th i s mon th ' s
"Mystery Hexdump." You may have noticed
Hexdumps appearing in previous issues of
COMPUTIST with no explanation as to what
they are or where they came from. The first
of these was in COMPUTIST No. 35 on page
2 9 .

Search your back issues for these strange and
elusive hexdumps. You never can be quite sure
as to what they will do.

This months "Mystery Hexdump" becomes
a normal BASIC program that can be RUN. A
word of warning though, do NOT attempt to
edit any lines of the program or you will turn
into a birdcage liner!

Look for more of these bizarre hexdumps in
f u t u r e i s s u e s o f C O M P U T I S T. T h e r e s u l t s
c o u l d b e w i l d .

0800: 00 24 08 0A 00 86 52 4E $35C9
0808: 44 28 34 29 3A 81 44 41 $F77B
0810: 54 41 D0 30 CI 34 3A 87 $92AF
0818: 52 4E 44 28 44 41 54 41 $AD4E
0820: 29 3A 82 00 44 08 14 00 SF0C0
0828: 47 45 54 D0 C9 31 36 33 $1590
0830: 38 34 3A 48 54 41 42 00 $4E01
0838: 31 34 30 3A 56 54 41 42 $3309
0840: 00 39 36 00 86 08 IE 00 SF0E3
0848: 97 3A BA 22 50 4F 40 41 $0305

0850: 52 20 50 52 49 4E 54 53 $95AB
0858: 3A 22 3A A2 34 3A 84 22 $5529
0860: 4E 55 40 42 45 52 20 4F $5062
0868: 46 20 50 52 49 4E 54 20 $3FC5
0870: 28 33 2E 32 20 49 53 20 $65E8
0878: 47 4F 4F 44 29 3F 22 3B $0946
0880: 50 52 49 4E 54 00 02 08 $065F
0888: 28 00 BA 3A 84 22 53 50 $58F2
0890: 45 45 44 20 28 31 20 35 $911A
0898: 30 30 20 20 31 30 30 20 $E703

08A0: 49 53 20 47 4F 4F 44 29 $B09A
08A8: 3F 22 3B 53 50 45 45 44 $6A3F
08B0: 3A 53 50 45 45 44 00 53 $2600
08B8: 50 45 45 44 OB 31 30 30 $BF84
0800: 30 00 E7 08 32 00 91 3A $8307
0808: 92 33 3A B9 09 31 35 33 $2692
0800: 30 32 20 30 3A 93 48 54 $0O0A
0808: 41 42 20 56 54 41 42 3A $9470
08E0: 53 54 45 50 00 30 00 28 $F052
08E8: 09 30 00 53 54 45 50 00 $A188

08F0: 53 54 45 50 08 53 50 45 $4097
08F8: 45 -44 3A 50 4F 50 00 39 $A11F
0900: 35 OA OF 28 50 52 49 4E $2607
0908: 54 OA 53 54 45 50,29 3A $B02E
0910: 58 43 4F 53 00 28 OE 28 $01F0
0918: 53 54 45 50 29 OA 50 4F $6B0O
0920: 50 29 OB 31 2E 37 33 00 $094B
0928: 55 09 46 00 59 53 49 4E $B02E
0930: 00 OF 28 53 54 45 50 29 $2032
0938: OA 50 4F 50 3A 93 01 48 $226B

0940: 54 41 42 08 32 OA 58 43 $7A8F
0948: 4F 53 20 56 54 41 42 09 $97BA
0950: 59 53 49 4E 00 80 09 50 $34E7
0958: 00 AO 04 28 59 53 49 4E $A607
0960: 29 01 31 30 00 04 28 58 $1302
0968: 43 4F 53 29 01 31 30 04 $9090
0970: B9 32 38 20 52 4E 44 28 $5730
0978: OB 28 31 29 OA 35 29 00 $2FF0
0980: 9E 09 5A 00 AO E2 28 47 $6167
0988: 45 54 29 OF 31 32 37 04 $770F

0990: BE 49 4E 50 55 54 24 3A $A4E1
0998: 89 3A AB 33 30 00 A6 09 $EEF5
09A0: 64 00 AB 36 30 00 80 09 $7844
09A8: 6E 00 83 34 32 20 38 35 $3045
09B0: 20 31 32 37 20 31 37 30 $FF07
09B8: 20 32 31 33 00 00 00 00 $84EE

A F : B F 0 9

S A V E P O L A R P R I N T S

M o s t

W a n t e d
L i s t

Need he lp
backing-up a particularly

s t u b b o r n p r o g r a m ?
Send us the name of the program and
i t s manu fac tu re r and we ' l l add i t t o ou r
Most Wanted List, a column (updated
each issue) which helps to keep
C O M P U T I S T r e a d e r s i n f o r m e d o f t h e
programs for which softkeys are MOST
needed. Send your requests to:

C O M P U T I S T
W a n t e d L i s t

P O B o x 1 1 0 8 4 6 - K
Ta c o m a , W A 9 8 4 11

If you know how to deprotect
unlock, or modify

any of the programs below,
let us know. You'll be helping your fellow
COMPUTIST readers and earning
M O N E Y a t t h e s a m e t i m e . S e n d t h e
i n f o r m a t i o n t o u s i n a r t i c l e f o r m o n a
D O S 3 . 3 d i s k e t t e .

Apple Business Graphics Apple Computer
J a n e A r k t r o n i c s

V i s i b l e n d M i c r o l a b

Catalyst Quark, Inc.

G u t e n b u r g J r. & S r. M i c r o m a t i o n LT D
Prime Plotter Primesoft Corp.

The Handlers Silicon Valley Systems

The Apple's Core: Parts 1-3 The Professor

F u n B u n c h U n i c o r n

Willy Byte ... Data Trek
C r a n s t o n M a n o r S i e r r a O n - L i n e

Snoggle Broderbund
A B M M u s e

Mychess I I Da tamos t

Agen t U .S .A . Scho las t i c

Handicapping System Sports Judge
O d i n O d e s t a

M a b e l ' s M a n s i o n D a t a m o s t

Bra in Bank The Obseva to ry

C r i m s o n C r o w n P e n g u i n

Cryp t o f Med ia S i r Tech
T h e W o r k s F i r s t S t a r S o f t w a r e

Cross Clues Science Research

Peeping Tom Microlab
Jigsaw Microfun

M i n e r 2 0 4 9 e r I I M i c r o f u n

C r e a t e w i t h G a r fi e l d D L M

P r i n t M a . s t c r U n i s i o n W o r l d

B a n d i t s S i r i u s S o f t w a r e

Operat ion Frog Scholast ic Sof tware

6 C O M P U T I S T N o . 3 8

readers' sofftkey Sk copy exchange
John Howard's softkey for...

Ye t A n o t h e r F - I S
Strike Eagle

M i c r o P r o s e
120 Lake F ron t D r.

Hunt Valley, MD 21031

Requirements:
A copy program that can select tracks
A sec to r ed i t o r

Larry Jasonowicz did a good job of tracking
down Ae protection on F-15 Strike Eagle in
COMPUTIST No. 24 page 19. Although my
copy was different from his, I was able to
deprotect it using the information from his
ar t i c l e .

The bytes to change on my copy are as
follows: On track $1F sector $0, starting at byte
$D4, the code I found was A9 60 8D 0D 6A
and the byte to change was byte $D5 from a
$60 to $86. On track $21 sector $A, starting
at byte $69, the code was A9 C0 8D 01 02 and
the byte to change was byte $70, from a $C0
to $DB.

1) Fpmat a new disk.
2) Copy tracks $05 and $06 from a normal DOS
d i s k .

3) Copy tracks $00-$04 and tracks $07-$22
from the original disk to the normal DOS disk.
4) Sector edit track $1F sector $00, byte $D4,
from $60 to $86.

5) Sector edit track $21 sector $0A, byte $70,
from $C0 to $DB. The copy is now
C O P Y A a b l e .

S

Sandy Eubanks' softkey for...

Championship
L o d e R u n n e r

Requirements:
Championship Lode Runner disk
A b l a n k d i s k
A sec tor ed i to r
The ability to move memory pages 0 to 7 on

Reset (Modified F8 ROM or Senior PROM)
Super lOB 1.5
H a r d c o r e C O M P U T I S T N o . 2 2

Championship Lode Runner continues the
tradition of its predecessor, only the game levels
are much more di fficul t . An addi t ional feature
is the ability to save your game and continue
it at a later time. This feature was sorely needed
by the original release; 150 levels are too much
for one sitting. The following softkey will give
you that option. Read on.

There have been two softkeys for Lode
Runner published in COMPUTIST. Tom
Phelps' (issue No. 22) is the one on which this
softkey is based. Steve Marvin's softkey (issue
No. 28) is for those without a way into the
monitor. Being a novice to assembly language,
I could not modify Mr. Marvin's code to work
with Championship Lode Runner. Having a
Senior PROM, however, I could do enough
disk snooping to use Mr. Phelps method with
just a few modifications. Therefore, you should
follow the softkey as listed in Mr. Phelps'
article, substituting the step numbers below for
its corresponding number in that article.

4) Type in a BASIC program that will run our
Championship Lode Runner main file.

1 0 T E X T : H O M E : P R I N T
C H R $ (4) " B R U N C H A M P. L R . B "

5) Insert a blank disk and format it.

I N I T C H A M P . L O D E R U N N E R

8) Type in the following hexdump which will
move everything back into place and start our
g a m e .

2900: A0 5F A9 9B A2 25 20 42 $9A89
2908: 29 A0 2A A9 60 A2 35 20 $FE2E
2910: 42 29 A9 40 85 E6 20 F2 $9006
2918: F3 A0 40 A9 09 A2 06 20 $5F9D
2920: 42 29 A0 22 A9 02 A2 07 $CB9F
2928: 20 42 29 A0 00 B9 00 20 $B8CD
2930: 99 00 00 C8 00 F7 B9 00 $4704
2938: 21 99 00 01 C8 00 F7 4C $0EOA
2940: 00 60 84 01 85 03 A9 00 $F0BO
2948: 85 00 85 02 A0 00 B1 00 $0A89

2950: 91 02 C8 00 F9 E6 01 E6 $7E71
2 9 5 8 : 0 3 C A 0 0 F 0 6 0 $ B 7 5 3

9) Check your typing with CHECKBIN and
save the listing to another DOS 3.3 disk (other
than CHAMP.LODERUNNER).

B S A V E C H A M P . L R . M O V E S
,A$290e,L$5D

13) When the title screen appears, press RESET
and then a "7" (if you're using the Senior
PROM) or a ' *:" (if you have the modified F8
ROM) to move $0-8FF to $2000-28FF.
14) While still in the monitor, compact the code.

2Aee<6ee0 .94FFM
5 F e e < 9 B e e . B F F F M

17) Install the move routines. (Insert the disk
on which you saved the hexdump).

B L O A D C H A M P . L R . M O V E S

18) Insert the disk with the copied game boards
and save the main file we Just created.

BSAVE CHAMPXR.B,AEFD,L7503

20) Back it up immediately with COPYA or
some other fast copy program.

Obviously, the main changes in the hexdump
from Mr. Phelps' softkey are to allow saving
of some additional memory areas. We also had
to delete part of his routine that would have
zeroed those areas we wanted to save. The
additional memory locations contained the
sound routines present in the Championship
v e r s i o n .

Note that it's possible to put both the Lode
Runner main file and the Championship Lode
Runner main file on either game board disk.
Both files search for the game boards on the
same tracks, $03-0C. If you want to do this,
you will have to mark the VTOC as Mr. Phelps
suggests. Additionally, you'll have change your
hello program to allow BRUNning of either file.
The advantage of using the Lode Runner file
to play the Championship game boards is being
able to practice difficult levels with the so-called
"cheat" keys. Conversely, using the
Championship file to play Lode Runner game
boards allows you to save your game and
cont inue i t l a te r.

In any case, it is now your option to do as
you please... as it should have been all along.
Enjoy!

i

Robert Muir's softkey for...

Spectrum Holobyte Inc.
1050 Walnut, Suite 325

Boulder, CO 80302

Requirements:
128K Apple lit or lie (required by game)
At least one dr ive
C O P Y A
A sec tor ed i to r
A b l a n k d i s k
G a t o

Gato is a superb multi-screened submarine
simulation game. Since the softkey in
COMPUTIST No. 23 did not work for my

C O M P U T I S T N o . 3 8 7

readers ' so f f t key A copy exchange
version (1.3) of Gato, I set out to discover what
i t w a s a b o u t . I d i s c o v e r e d t h a t G a t o w a s

programmed in Pascal and that the only
protection my copy had on it was to change the
address header and address epilogue. On odd
tracks the headers are D4 AA 96 instead of the
normal D5 AA 96 (there was no "nibble count"
on my version). This can be circumvented
easily by using the following code to read
address headers:

Larry Rando's softkey for...

B94F- BO 8C C0
B 9 5 2 - 1 0 F B
B 9 5 4 - 4 A
B 9 5 5 - C 9 6 A
B 9 5 7 - 0 0 E F

IDA $C08C,X
BPL $B94F
LSR
CMP #$6A
BNE $B948

This may look familiar because it is the same
trick used to read the alternating address headers
in Penguin Software releases. The bytes D4 and
D5 will both turn into the value 6A when shifted
to the right, so they will both be considered the
same byte when read.

The altered address epilogues can be ignored
by not checking for them.

T h e f o l l o w i n g s o f t k e y w i l l m a k e a
COPYAable copy of Gato. It can also be
CATALOGed using the //c utilities disk and
probably read using Pascal (I'm not sure
because I'm not willing to spend what little
money I have on yet another language).
1) Turn on your computer and boot DOS 3.3.
2) Alter the Read Address Header routine.

C A L L - 1 5 1
B 9 5 4 : 4 A C 9 6 A D 0 E F

Bantam Electronic Publishing
666 Fifth Avenue

New York, NY 10103

Requirements:
Fast disk copier
A s e c t o r e d i t o r

I, Damiano is an adventure based on a
popular fantasy trilogy and is part of Bantam
Electronic's "Living Literature" series. The
screen format has a different look opposed to
the typical full screen graphics. The hi-res
pictures are on the upper half of the screen with
text residing on the lower half of the screen.
It includes some primitive animation. Overall
it is a fun adventure game to play, especially
if you are familar with the book in which the
a d v e n t u r e i s b a s e d .

T h e P r o t e c t i o n

When I used a fast copier to copy the disk,
I only got one read error, on track $11. That
told me that the disk was protected in some way.
When I booted the disk the head did some kind
of long movement and stayed on one track for
a while. It was doing this because the nibble
count went to Track $11 to check the disk. I f
it was a copy it would come oack with a

message saying "DISK READ ERROR". I
preceded to search for the text DISK READ
ERROR to see where it was on on the disk. I
found the message on track 0, sector 0. I then
set up a boot code trace to find out what caused
the program to print this message; in other
words there had to be some sort of nibble count
r o u t i n e t h a t t h a t c h e c k e d T r a c k $ 1 1 f o r

something and then returned to display the
message "DISK READ ERROR." I found the
nibble count on track 0, sector 0. The protection
code looks l ike th is :

0 8 2 1 - J S R $ 0 8 3 F - C a l l s n i b b l e c o u n t .
0 8 2 4 - I D A # S 0 0 - N o r m a l l o a d e r r o u t i n e .
0 8 2 6 - A S L
0827- LDY #$02
0829- JSR $0900
0820- JSR $0A33
082F- iNO $0AB1
0832- INO $0A62
0835- IDA $0A62
0838- OMR #$0A
083A- BNE $0920
0830- JMP $09A7 -end o f loader.
083F- IDA #$40 -Actual nibble counter.

T h e P r o c e d u r e
1) Use any fast disk copier and copy both sides.
Ignore the read error on Track $11 (second side
unprotected).
2) Get out your sector editor and edit side 1 >
track 0, sector 0, starting at byte $21 from 20
3F 08 to EA EA EA. This eliminates the JSR
to the n ibb le count .

3) Write it back out.
T h a t ' s i t !

3) Tell DOS to ignore the address epilogue.

B 9 8 B : 1 8 6 0

4) RUN COPYA and copy Gato to a blank disk.

5) Run your favorite sector editor and make the
following sector edits:

Track Sector Byte From To

$ 0 $ E $ F 8 $ 3 8 $ 1 8
$ 0 $ F $ 8 0 $ 3 8 $ 1 8

The first modifies the second stage boot to
ignore address epilogues. The second modifies
the final Pascal DOS to ignore address
epilogues.
6) Write the sectors back to the new copy.

T h a t w i l l m a k e a C O P YA a b l e v e r s i o n o f
G A T O !

m o n k ' s f r i n q e o f h -s i r , s t o o d o u t s i d 0 ,
c u r s i n q a s t a c k o f 1 o 9 s . M v' rn a s t e r ' s
s t a f f £ h r o b bad i ri h i s h a ri d , a w a r ri i n 9
t o b a c a r a f u 1 . I s n i f f a d , i n y n o s a l a s s
m a 9 i c a 1 t h a n t h a s t a f f y a t . i u s t a s
a f f i c i a n t..
> G O T O H U T

T h a i c a c o a t i n 9 t h a hill s h o n a in
t h a rn o o n 1 i 9 h t 1 i k a a b a k a r ' s 9 1 a 2: a . N a
s t r IJ 9'd 1 e d u p t h a si o pa, a n d b y t ha t i rn a
L.J a r a a c h a d t h a h u t, t h a rn a n h a d s t o p p a d
c u r s i n 9 £ h a i.j o o d . It h o u 9 h t i t u a s
s t u p i d , a V a n f o r a h u rn a n , t o c u r s a
1 o 9 s - U h V b o t h a r ?i

C O M P U T I S T N o . 3 8

readers ' so f tkey A copy exchange
Charles Taylor's softkey for...

W i l d e r n e s s

E l e c t r i c Tr a n s i t
5 0 1 M a r i n S t r e e t

S u i t e 11 6
Thousand Oaks, CA 91360

Requirements:
Apple //
Four b lank d isk s ides

Super lOB
Copy n Plus

WILDERNESS is a unique adventure
simulation game. Imagine that you have just
crashed your airplane somewhere in the high
Sierras. You manage to escape from the wreck
with a few survival items, including a
topographical map, a compass, tent, some tools,
and some food. You see a ranger station on your
map, but your crash-site could be anywhere,
and the map covers hundreds of square miles.
In order to survive, you will have to battle the
elements, deal with the various wildlife, such
as bears, snakes, cougars, and insects, and ford
numerous streams and lakes. In addition you
must eat, sleep, camp, avoid injury, exhaustion,
overheating and exposure. This is just one of
the scenarios available to you if you play
W I L D E R N E S S .

The game uses a three-dimensional graphics
generating system, a series of accurate models
of weather patterns, and a 300 word vocabulary
with which to negotiate the adventure.
WILDERNESS i s accu ra te down to the mos t
mundane details, such as hanging your food
from a branch at night so the bears don't get
it, correcting your compass readings for the
difference between true north and magnetic
north, and putting your fire out before breaking
c a m p .

While the game is sophisticated, the copy
protection is not, consisting of four protected
tracks (0-3). Any bit copier can deal with this
program, but the fame and fortune of being a
COMPUTIST contributor beckons, so here
goes .

Since we will replace their DOS with DOS
from the 3.3 system master, we only have to
deal with one protected track (3). Track three
has the address epilogue changed from DE AA
to A A DE. Once track three is converted we
find that there is a normal catalog listing of three
short files on track 3, including a boot program

called BOOT and a special DOS image called
SMALLDOS. The normally formatted tracks
4 - 2 2 r u n u n d e r S M A L L D O S .

The game consists of two sides, the
JOURNEY side and the SIERRA NEVADA
side. Separately available is a third side, called
the GLOBAL EXPLORER. This disk gives you
five more countries in which to adventure. The
JOURNEY disk is unprotected, and the
S I E R R A N E V A D A a n d G L O B A L
EXPLORER sides use identical protection
schemes.

Step By Step

1) Boot your DOS 3.3 system master disk.

2) Type INIT BOOT and init two blank disks
(one if you don't have GLOBAL EXPLORER.)
Label these disks SIERRA NEVADA and
G L O B A L E X P L O R E R .

3) Using Super lOB (the Controller Writer
helps) copy track $3 of both the GLOBAL
EXPLORER and SIERRA NEVADA sides to
their respective INlTted disks, changing the
address epilogue from DE AA to AA DE.

4) Again, using Super lOB, copy tracks $4
through $22 from the SIERRA NEVADA and
GLOBAL EXPLORER to the INlTted disks.
Use the default (normal) marker settings this
time. The Controller below will perform both
steps 3 and 4 in one run for you.

5) Use COPYA to copy the JOURNEY side to
the back side of each of your new copies. (The
G L O B A L E X P L O R E R a n d S I E R R A
NEVADA sides are independent of each other,
but both use the JOURNEY side.

6) On my copy of GLOBAL EXPLORER, 1
got an error on sector $F of track $0F. 1 used
the sector editor of COPY n-1- patched to
custom DOS, ignored data checksums and data
epilogues to read the protected sector, then
wrote it back to my copy. If you are not copying
GLOBAL EXPLORER at this time, you may
find it easier to use the sector editor from COPY
n-t- for tracks $4-$22.

7) Take a hike! (with your newly softkeyed
WILDERNESS of course).

c o n t r o l l e r

1000 REM WILDERNESS

1010TK = 3:LT = 4;ST = 15:LS = 15 :CD=WR:FAST
= 1 : POKE 776 ,0 : GOSUB 170

1020T1=TK : GOSUB 490

1025 GOSUB 610 : IF LT = 4 THEN GOSUB 230 : TK = 4
;LT = 35 : GOTO 1025

1030TK=T1 : GOSUB 490 : GOSUB 610 : IF PEEK (TRK
) = LT THEN 1050

1040 TK=PEEK (TRK) : ST=PEEK (SCT) ; GOTO 1020
1050 HOME : PRINT "COPYDONE" : END
5000 DATA 170 ,222 ,222 .170

c o n t r o l l e r c h e c k s u m s

1000 - $356B
1010 - $F843
1020 - $0BAB
1025 - $5506

1030 - $E182
1040 - $5B61
1050 - $0C5D
5000 - $D2C1

John Howard's softkey for...

Golf's Best
One Step Software

Requirements:
A program that will read non-standard sectors
and write them back in a normal format (Super
lOB, Copy n Plus, CIA).

Golfs Best is a very good golfing simulator
that will let you see die direction your ball is
going before you hit it. The overall tee-to-pin
graphics display is not as good as some golfing
simulators but the approach and screen displays
are excellent. The only thing that I would like
to see in this simulation is for the players to have
honors on tee-off. Tht game keeps the same tee-
o f f o rder f rom s ta r t to fin ish .

T h e P r o t e c t i o n

Tracks $00-$02 and even numbered tracks
$04-$22 are normally formatted and can be
easily copied with the Copy n Plus manual
sector copy function. Odd tracks $03-$21 have
a l t e r e d a d d r e s s h e a d e r s , t r a i l e r s , a n d
checksums. By disabling the address header and
the checksum using the CIA you can copy all
the non-standard sectors to a normal disk. This
copy boots and works fine as is. ^

s

feature \fe-cher\ n [ME feture^ fr. MF,
fr. Lfactura act of making, ff. /actus,
pp. offacere to make—more at DO] 1:
the structure form, or appearance esp.
of a person 2: a software bug mentioned
in i t s documenta t ion

C O M P U T I S T N o . 3 8 9

h a r d w a r e p r o j e c t .

(^veatina ^witchaLia
by Wes Felty

Requirements:
Unenhanced Apple //e
/ /e enhancemen t k i t
Access to another computer
EPROM programmer that can handle 27128's
O n e 2 7 6 4 a n d t w o 2 7 1 2 8 E P R O M s
(additional supplies listed at end of article)

Note: The procedure described in this article
requires modification of your computer, which
may void its warranty. COMPUTIST will not
be held responsible for any damages incurred
while following this procedure. Observe the
usual precautions when working with electronic
equipment.

Why create a Dual System?
The folks at Apple Corp. are claiming that

more and more software is going to be written
for the Apple //c and enhanced //e computers
only. Considering the advantages of the faster
65C02 chip, its additional machine language
instructions, some improvements in the monitor
ROM chips, and the mouse text character set,
it is quite likely that many new programs will
be developed that have to run on the enhanced
computers. But if you get your present //e
enhanced, it will scramble some of your old
software and not run some of it at all. If you
are just starting out and buying all new
software, then you may not need a dual system.
But if you have old software like PES,
AppleWriter, ASCII Express Pro (DOS
version), etc., then you nê a dual system to
be able to run the old unenhanced software and
the new enhanced so f tware .

PFSiFILE and PFS:WRITE programs
released before November, 1985 are severe
victims of the scrambling that the He and
enhanced //e Apple computers do to some older
software. All of their command prompt lines,
field category prompts, and underlined or
boldfaced text are replaced with mouse text
icons. AppleWriter //e's DOS 3.3 version has
its data line partially scrambled. The DOS 3.3
version of Sensible Speller also has its command

lines scrambled. In fact, any program that uses
inverse characters anywhere in upper and lower
case may fall victim to this scrambling. If the
program has a solid, non-blinking or a custom
cursor, it probably will get all of its inverse
upper case characters converted to Mouse Text
icons. By the way, I have patches available for
fi x i n g A p p l e W r i t e r , P F S i F I L E , a n d
P F S : W R I T E t o r u n o n e n h a n c e d / / e s .

Some other programs will not run properly
o n t h e e n h a n c e d / / e d u e t o m o n i t o r R O M

problems. My version of ASCII Express Pro
will boot up, but then later lock up after making
contact, usually long distance, but before I have
done any communicating. (United Software will
give free updates to some users depending on
the serial number of their disk). My Ultra ROM
board with GPLE built into it just freaks out.
These problems of hardware and software
incompatibility are usually due to the
programmers having used ''unofficial" jumps
into monitor routines. The unsupported jumps
show up in most non-trivial programs and in
many cases were needed to get around slow
operation or bugs in the original //e ROMs. But
you don't have to buy new versions of hardware
and software to use with the enhanced //e. Just
create a swi tchab le enhanced/unenhanced / /e
and be able to use all of your old and the newly
developed hardware and software. ̂

Some programs will not boot up at all on the
//cs or enhanced //es due to the programmer's
"protection" to keep their programs from
running on "clones." This "protection" on
programs like the "Disk Scanner" are the
height of ridiculousness since they worked by
detecting a bug that was known to be in the
Apple's 6502 CPU that Apple had never
bothered to fix but that some of the clones had.
These old programs will have to be patched to
run on any enhanced //e since my switchable
system doesn't do anything to the new 65C02
that replaces the 6502 CPU chip.

How to tell if your Apple //e is Enhanced
It is quite simple to tell an enhanced //e from

an unenhanced one. First of all, it probably says
"Enhanced" right above the green power-on
light. Also, an enhanced //e says "Apple //e"
when cold booted and an unenhanced one says
"Apple][". With an enhanced //e, you can
e n t e r n o n - D O S c o m m a n d s l i k e " c a l l - 1 5 1 " i n
lower case without generating a "SYNTAX

ERROR". And finally, from the monitor
prompt ("*"), entering "!" puts you into the
mini-assembler with its "!" prompt.

H o w t h e E n h a n c e d / U n e n h a n c e d

Switching system works
The main thing that makes the switching

system relatively simple is the fact that the
Apple //e uses chips that are completely
compatible with 2764 EPROMs for the monitor
R O M s a n d a 2 7 3 2 E P R O M f o r t h e V i d e o
ROM. Therefore the "official" Apple chips can
be directly replaced with EPROMs with no
changes needed to the computer's circuit board.
Therefore, the "official" chips can be replaced
back into the computer easily at any time.

The other main fact that simplifies
constructing a dual system is the fact that a
27128 EPROM can act just like two 2764
ROMs rolled into one chip and a 2764 EPROM
can act like two 2732s in one chip. A hardware
switch can connect a select pin on the EPROM
to ei ther +5 Vol ts to act ivate one bank or to

ground potential to select the other bank. The
65C02 chip can't be bank switched, but then
it doesn't need to be since a 65C02 can be used
in any of the Apple // line of computers.

When an Apple //e is made enhanced, four
of its chips are replaced; the 6502 CPU, the
Video ROM, and the CD and EF monitor
ROMs. The switchable system has both the old
code for the unenhanced computer and new
code for the enhanced computer burned into
double sized memory chips replacing the Video
ROM and the two monitor chips. The monitor
chips have the same pinout arrangement as the
original Apple chips, so they are directly
replaceable.

With the Video ROM a 28 pin chip has to
replace a 24 pin chip, so a more complex
adapter socket is required. Wires run from the
three new chips to a switch mounted on the back
o f the compute r to sw i t ch be tween
enhanced/unenhanced. When the switch is in
the enhanced position, the computer looks
internally like a normal enhanced Apple //e.
When the switch is in the unenhanced position,
the computer looks exactly like an unenhanced
//e except for having a 65C02 chip in place of
the 6502 CPU. The I.D. bytes and everything
else that distinguishes each system is fully intact
for both switch settings.

1 0 C O M P U T I S T N o . 3 8

a n c em n e n n a n c eJ / / ,
If your only problem with the enhanced //e

comes f rom the mouse tex t charac te rs
scrambling upper case inverse letters as in the
PFS software, then you can greatly simplify the
modifications given below by just following the
procedures for the Video ROM. If you did just
that part and then later found the need for the
full conversion, it would not be any harder to
finish the job with the two monitor ROMs at
a latter t ime.

W h a t H a s t o B e D o n e

To create a dual enhanced/unenhanced system,
you need to
1) Capture the code from the old CD, EF, and
Video ROMs (before you have the computer
enhanced!)

2) Capture the code from the new CD, EF, and
V i d e o R O M s

3) Bum the two sets of code into the double
capacity ROMs
4) Construct adapter sockets for bank switching
t h e t w o m o n i t o r R O M s

5) Construct an adapter socket for the Video
R O M t o :

a) Bank switch between enhanced and
unenhanced

b) Connect a 28 pin chip into a 24 pin socket
6) Replace the 6502 CPU chip with a 65C02
chip
7) Connect the adapter sockets to the switch
8) Replace the original chips with the dual chips
9) Test the new chips

Each of the above processes wUl be explained
in deta i l be low.

Capturing the ROMs' Code
There are at least three ways to capture the

c o d e f r o m t h e u n e n h a n c e d a n d e n h a n c e d
monitor ROMs. The code from the EF ROM
can be just moved down in memory with the
monitor move operation:

1000<E000.FFFFM
and BSAVEd from there. Unfortunately the CD
ROM is closely tied with the I/O area.
Depending on the settings of some soft
switches, it may be visible or invisible when
you try to read the $Cxxx area. Also, some soft

switches go crazy if you try the monitor move
operation on the ROM and accidentally trip
t h e m .

Another way to capture the codes is to use
Don Lancaster 's "Snatchmon" rout ines. These
rou t i nes take ca re o f t he so f t sw i t ches and

everything and essentially download the code
into RAM memory. Copies of these programs
have been published in the November, 1985
issue of Modem Electronics, an issue of
Computer Shopper, and in the Synergetics (Don
Lancaster's company, address below) Absolute
RESET mod package ($19.50). If you called
the Synergetics helpline at (602) 428-4073, Don
Lancaster would probably mail you a free copy,
but I highly suggest that you buy from him his
Absolute RESET package. It is way
underpriced at $19.50 for the value given. It
is fiill of valuable information on EPROMs, it
tells you how to build personality modules to
let a 2732 EPROM bumer program 2764s and
27128s, it gives you the Snatchmon programs,
and it tells you how to make a small change to
the monitor ROM to give you a way to RESET
out of ANY program.

While this second method will allow you to
capture the monitor ROM's code, there isn't
any way to recover the code stored in the Video
ROM from the computer that it is mnning on.
The only way to recover this code, and
therefore the best way to recover the code from
all three chips, is to use an EPROM bumer that
can download code from a chip. Using another
computer (you can't use your computer when
you remove the ROMs!), download the code
from the Video ROM, the CD ROM, and the
EF ROM and save it to disk. Include in the disk
file name something to tell you if these codes
were enhanced or unenhanced. You wi l l find
these chips well marked in the two rows of chips
closest to the keyboard.

If your //e is already enhanced (your Video
ROM will be part number 342-0265, not
342-0133), then you will have to find someone
else with an unenhanced //e to copy the code
for the three chips from. Unfortunately, Apple
dealers won't let you keep your old chips when
they enhance the computer. If your computer
is not yet enhanced, then be sure to copy the
unenhanced chips' code before having it
enhanced. Getting it officially enhanced is the
easiest, though most wasteful, way to get access
to the enhanced chips AND the 65C02 CPU

chip that you will need. Probably the most ideal
situation would be for a person with an
enhanced /7e and one with an unenhanced //e

working together to both help each other in this
project.

Using whatever method works best for you,
capture the code from the three chips for both
the enhanced and unenhanced computers. Bum
both the enhanced and the unenhanced code into
a 2764 EPROM for the Video ROM and in to
27128s (2728s) for the two monitor ROMs. Be
sure to use the same order in all three EPROMs,
for example enhanced in the low end and
unenhanĉ in the high end. Therefore, if your
EPROM bumer expects code to start at $1000,
then :

BLOAD yiDEO.ENHANCED, A$1000
BLOAD VIDEO.UNENHANCED, A$2000
and fo r t he mon i to r ROMs:

BLOAD CD.ENHANCED, A$1000
BLOAD CD.UNENHANCED, A$3000
Do the same for the EF code.

If you are starting with an unenhanced //e,
and have managed to get the enhanced ROMs
from other than an "official" enhancement,
then you will need to find a 65C02 to replace
the 6502 CPU in your computer. I doubt that
you will be able to get one from your ' 'official"
Apple dealer any more than he will let you keep
your chips or tell you in advance about the
software that won't work properly on your //e
after you get it enhanced.

The only source that I have found for the
65C02 is The Westem Design Center, Inc.
(address below) for about $9.15. They use part
number W65C02P-2 and will ship C.O.D.

Constructing the Adapter Sockets
The three special adapter sockets are each

constructed by mounting one low profile socket
on top of another with the modifications being
done between the two sockets. This adds to the

strength of the arrangement, prevents damage
that can be caused by soldering directly onto
the EPROM, and allows the EPROM to be
easily removed from the adapter socket for any
later reprogramming.

Before we start constructing the adapter
sockets, let's be sure we know how to locate
the correct pins. Looking at a chip or socket,
you should find one end marked with a small

C O M P U T I S T N o . 3 8 1 1

half circle, a dot, a beveled edge, or a number
"1". (See Figure 1). If you hold the chip or
socket right side up with the marked end toward
you, then the pin closest to you on the right side
is pin number one. Pin number two is the next
farther pin away on the right side. This
continues up to pin 12 or pin 14 for 24 and 28
pin chips respectively.

Then the numbers continue from the pin
straight across from the last one continuing to
increase coming toward you until the highest
number pin is at the front left side of the chip.
Be sure to check the numbering with the chip
o r s o c k e t R I G H T S I D E U P.

Now let's see how the chips are bank
switched. Some of the pins of the 2764 and
27128 EPROMs are bank select pins-(address
lines). For our purposes this is pin 2 on the 2764
EPROM (Video ROM rq)lac«iient) and pin 26
o n a 2 7 1 2 8 E P R O M (m o n i t o r R O M
replacements). If the select pin is brought to +5
Volts, it selects one bank and if it is brought
to ground potential, it selects the other bank.
The + 5 Volts potential comes from pin 28 and
the ground potential comes from pin 14 for the
28 pin chips. These are pins 24 and 12
respectively in the 24 pin chips. To set up a
hardware bank switcher, we nê to disconnect
the select pin from contact with the mother
board and connect it throu^ a Double Throw
switch to connect it to either the 4- 5 Volts pin
or the ground pin of the chip (see Figures 2 &
3). We will disconnect the select pin by
removing the select pin on the bottom socket
so that it doesn't enter the mother board socket
when we plug the adapter socket into the mother
b o a r d .

Constructii^ the Video ROM
Socket Adapter

The Video ROM chip adapter takes more
than is shown in Figure 3 because of the
problem of plugging a 28 pin chip into a 24 pin
socket. Fortunately, the four pins that stick out
over the end of the 24 pin mother board socket
(1, 2, 27 and 28) are easy to deal with. Pin 1
(VVP line) and pin 27 (PGM line) need to be
at +5 Volts for the chip to be read. Pin 28 is
supposed to be plugged into the socket's +5
Volt outlet, but that is pin 24 on the 24 pin
socket. The chip's pin 26 which is not connected
internally is the one that plugs into the mother
board's pin 24, +5 Volt supply. Therefore, if

Figure 1

we solder a wire connecting pins 26, 27, 28,
and 1 together, the Video EPROM is all set up
for a read action, which is what we need. And.
pin 2, the select pin, would have had to be
removed from the lower socket anyway and
soldered to the center position of the double
throw switch. Therefore, the 28 pin chip in the
24 pin socket comes out being to our advantage.
See Figure 4 for the complete Video ROM
wiring diagram.

To actually construct the Video ROM adapter
socket, start with three pieces of hookup wire
about 14 inches long each, a 28 pin socket and
a 24 pin socket. Strip enough insulation off of
one end of one piece of wire to connect pins
1, 28, 27, and 26. Strip just enough insulation
f rom the ends o f each w i re to so lder to the
socket pins or the switch. Tin both ends of each
wire. Solder the wires as close to the sockets
as you can being careful that the wire doesn't
touch the adjacent pin (except for 26, 27, and
28). For the present, just solder them enough
to get to stick to the surface of the pins. Be
careful to not apply too much heat yet. Some
sockets wi l l mel t wi th too much heat and the

pins will puU out. Once the wires are ''tacked"
onto the pins as in Figure 4, install the 24 pin
socket onto the bottom of the 28 pin socket so
that the pins away from the pin 1 end line up.
The lines on Figure 4 from the 28 pin socket
to the 24 pin socket are not representing wires,
but just the pins of the top socket inserted into
the lower socket. In other words, pin 3 of the
28 pin socket goes into hole 1 of the 24 pin
socket, pin 14 of the 28 pin socket goes into
hole 12 of the 24 pin socket, etc.

Being carefiil to not bend the pins on the
lower socket, work the pins of the 28 pin socket
as deep as you can into the 24 pin one. An
alligator clip on each end helps to hold the
sockets together while doing this. When you
have the two sQckets as close together as you
can get them, (they will be held apart by the
soldered wires), then gently sĉ eeze one end
of the socket adapter with a pair of pliers and
heat the solder connection on that end of the
adapter to permanentiy solder the wire to the
pin.

Heating it well at this time allows the lower
socket to push the solder connection firmly up
against the top socket and may even melt the
two sockets together. Repeat at the other end.
Connect the other end of the wire from pin 2
to the center post of a DPDT switch and the
other two wires to the outside posts of the same
switch. That completes the construction of the
Video ROM adapter.

Constructing the Monitor ROM
Adapters

Figure 2

socket will just have the one wire connected to
it. Plug each of these two modified sockets into
another 28 pin socket.

The lines on Figure 4 from the 28 pin socket
to the 24 pin socket are not representing wires,
but just the pins of the top socket inserted into
the lower socket. On both sockets, heat the
solder connections while squeezing the sockets
together like with the Video ROM. Connect the
other two wires to the DPDT switch being
careful to put the wires in the same order as
you did for the Video ROM socket. In other
words, be sure that the end of the switch that
has the pin 14 Video ROM wire also has the
pin 14 monitor ROM wire connected to it.

With a pair of needle nose pliers, carefully
pull out or break off pin 26 of each of the
monitor ROM's lower sockets. And finally, put
some little blobs of Epoxy Putty on the pieces
of wire to bond the wires to the sides of the

adapter sockets for strain relief. Also put some
Epoxy Putty on the sides of the adapters to bond
the two layers of sockets together. Epoxy Putty
can be found in most auto and hardware stores.
It consists of a foot long strip of a blue and a
yellow material. You tear off a couple of inches
of both colors and knead the two layers
together. When it is uniformly green, it is ready
to use as a sticky, thick, putty like material. If
you keep your fingers wet while handling the
material, Aen it doesn't stick to them as much.

If you have some very long cards in slots six
or seven, then these double socket adapters may
be too high for the cards to fit above them. Just
try to use only the top socket soldering as close
to the socket's body as possible. While doing
the soldering, you want to loosely fit another
socket on the bottom of the pins to hold the top
pins in place since the heat from the soldering
may temporarily loosen the top socket's pins.

Do NOT try to take a short cut and connect
all three EPROMS together using one switch.
It seems like it should work, but it can blow
your mother board. A $3 DPDT switch is much
cheaper than a $150 mother board.

Installation of the Dual Chips
Be sure to have the power turned off during

all chip replacements! First, install the Video
R O M E P R O M i n t h e fi r s t c o n s t r u c t e d s o l o

These two socket adapters are made from
nesting four 28 pin sockets together into two
sets of sockets somewhat similar to the Video
ROM adapter. Pick two sockets. Solder a 5 inch
piece of wire from pin 26 of one of the sockets
to pin 26 of the other one. Then solder an 11
inch piece of wire from this jumper wire to the
center post on the other (unuŝ) half of the
DPDT switch. Next solder wires on pins 14 and
28 on either one of the two sockets. The other

C O M P U T I S T N o . 3 8

socket. Be sure that the number one marked end
of the chip is on the same end as the number
one marked end of the socket. Replace the
mother board's Video ROM (position F-4 on
the mother board) with the EPROM. Be sure
that the EPROM's marked end is toward the
keyboard. Be careful to not bend under any of
the adapter socket's pins while installing them.

Install the CD and EE EPROMs in the two
sockets that are connected together. It doesn't
matter which one goes in which socket yet. Be
sure that they are both positioned with the
number one marked end of the chips in the
number one marked end of the sockets. Remove
the CD ROM (position D-8) and the EF ROM
(position D-10) from the mother board and
replace them with the respective EPROMs. Be
sure that the marked ends of the EPROMs are
toward the keyboard. If your Apple //e was
unenhanced, then replace the 6502 CPU
(position B-4) with a 65C02. That's it! Now for
testing.

Testing the Dual System
The first test is a quick one. Open the disk

drive door and turn on the computer. Be ready
to turn it off immediately if it doesn't beep and
start the disk drive. If there is any problem then
check that you didn't bend any pins while
installing the three adapters or CPU chip.
Notice rather the screen displays ''Apple]["
for the unenhanced switch setting or "Apple
//e" for the enhanced setting. Flip the switch
and press Ctrl-Open Apple Reset and you
should get the other message. Now use the built
in Diagnostic routine. Press Control-Closed-
Apple-Reset. For the unenhanced setting, the
screen should clear and occasionally turn
inverse. It should finish with the message
" K E R N A L O K " . T h e e n h a n c e d s e l f t e s t fi l l s
the screen with small squares which
occasionally flutter and finally, after a long
wait, the message "System OK" is displayed.
Self test both switch settings. Then try booting
a non-important disk in each setting with a cold
boot. Also boot a disk with "PR#6" and from
the monitor 6BP1 in both settings. You may
flip the switch while the computer is on but if
a program is running, you wUl find that some

Figure 3

programs, like PES and AppleWriter, are not
hurt by the flip, but many programs will be
clobbered. PES and AppleWriter use their own
internal routines instead of the monitor ROM's,
but many programs use the monitor ROM's
input routines and those are different in the two
types of ROMs, so the Apple gets lost. You
often have to cold boot after flipping the switch.

Finally, let's make sure that the enhanced
Vi d e o R O M i s o n a t t h e s a m e t i m e a s t h e
enhanced monitor ROMs. Flip the switch into
the enhanced position (Apple //e), cold boot the
computer, and turn on the alternate character
set by typing

P R # 3
PRINT CHR$(27)
X N V E R S E

You may also wish to type

PRINT CHR$(17)

t o r e t u r n t o 4 0 c o l u n m s w i t h t h e a l t e r n a t e
character set still active. Type some upper case
a n d l o w e r c a s e c h a r a c t e r s . T h e l o w e r c a s e
characters should show up in inverse and the
upper case characters should come out as maise
text icons. Enter "EG" together for the running
man. Flipping the switch back and forth should
alternate between mouse text and inverse text
for the upper case characters. But after flipping
the switch a couple of times, you may fmd that
i t "flakes ou t ' ' and needs to be co ld booted

again. If your computer boots up with "Apple
//e" and doesn't give icons with the "PR#3"
sequence above, then you need to switch the
pin 14 and pin 28 wires on one pole (side) of
the DPDT switch. Then fun through idl of the
tests again.

If you have a copy of AppleWriter, or a pre-
November, 1985 copy of PFSiFILE or
PFS:WRITE, then switch into enhanced and
boot any of them up. After noting the
"garbage", flip the switch and not^ the return
to english. With PFSiFILE flip die switch back
and forth when in the selection menu. This is
really impressive if your field prompts are in
all upper case letters.

I suggest mounting the switch in one of the
holes on the back of the computer, preferably
on the right side so that you won't accidentally
hit it when turning the power on/off.

M a t e r i a l s N e e d e d :

• EPROM Programmer (burner) capable of
handling up to a 27128 chip and capable of
downloading code from a chip
• Access to a second computer to use EPROM
b u r n e r i n
• The code from an unenhanced Apple //e's
Video ROM, CD ROM, and EF ROM
• The code from an enhanced Apple //e's
Video ROM, CD ROM, and EF ROM
• O n e 2 7 6 4 E P R O M
• Two 27128 (2728) EPROMs
• One 65C02 Microprocessor
• One low profile 24 pin socket
• Five low profile 28 pin sockets
• One DPDT switch (or two SPDTs)
• About two yards of hookup wire
• Some Epoxy Putty (for strain relief)

Synergetics
746 F i r s t S t . P.O . Box 809

Thatcher, Arizona 85552
(602) 428-4073

The Western Design Center, Inc.
2166 Eas t B rown Road
Mesa, Arizona 85203

(602) 962-4545
T E L E X 6 8 3 5 0 5 7

Wes Felty
2628 133rd P lace S.E.

Bothell, Washington 98012
(206) 337-3720

This whole procedure is very complex, but
then it is a pretty sophisticated change "being
made to the computer. If you don't feel like
tackling the whole construction process, then
you may wish to contact the author about the
availability of pre-constructed setups.

— i
C O M P U T I S T N o . 3 8 1 3

s o f t k e y f o r . . .

C y c l o d
By Felix LeChat

Sirius Software
(retired)

Requirements:
Tw o b l a n k d i s k s
A sec to r ed i t o r

Any bit copy program

Cyclod is another game from Sirius who, as
we all know, love(d) to protect their products.
Cyclod is not the greatest game around because
it does get repetitious, but craking it is the most
challenging part. Even the most up-to-date bit
copiers can't seem to copy Cyclod and there's
enough disk access to keep NMI users away.
However, after some delicate snooping and
examination, it can be saved as an ordinary
binary file.

You won't need any special little tools to
crack Cyclod, except for a nibble copier. This
procedure is fairly long and involved because
of the level of protection. I split the softkey into
two parts: getting Cyclod into memory and
saving Cyclod.

Much of the data loaded in at every level was
the same. To conserve space I crunched the
program and got rid of similar data. Then I
wrote a short program to uncrunch Cyclod and
simulate the boot program to "load in" data.
After testing I also had to make a few patches
to the main program to defeat checksum
rou t ines .

0) First pre-read these instructions and write-
protect Cyclod if it isn't already.

Part I: Getting Cyclod

1) Initialize your two disks. You may use a fast
DOS if you wish. Call one of them Disk I and
the other Disk II. Delete the HELLO program
o n D i s k 1 1 .

2) Bit copy only track 0 of Cyclod onto Disk 1.
3) Make the following sector modifications to
t r a c k 0 s e c t o r 0 o f D i s k I .

Warning! Be very careful. Track 0 is very
weird. After making the patches, you must write
the sector at least three times to assure proper
writing. Then read the sector at least twice and

make sure the patches are still there. If you write
it only once, chances are the patch won't work.

1st byte change from

$ 6 D I F 0 4

$ B 3 z e r o s

$E8 z e r o s

t o

B 3 0 8

A0 00 A9 10
99 AB 07 C8
18 59 10 C0
08 D0 F5 A9
A 9 8 D 4 D 0 4
A9 00 4C E8

8D 4E 04 99
AB 07 4C IF
0 4

4) Boot Disk I. After you see the hi-res page
flicker, remove Disk I and insert your original
Cyclod disk. When you hear several bleeps and
the disk reboots, immediately take out the
Cyclod disk and insert Disk II. Don't worry,
this process will not harm your original disk.

T h e P r o t e c t i o n

Sirius protected every track except for track
0. It uses 4-t-4 encoding, checksums of both the
boot program and the main program, and resets
the page 3 vectors. To start off I bit copied what
I could onto another disk, that is, just track 0.
After boot code tracing I was able to capture
the boot program and defeat the checksum
routines. This code lies in the text page but
modifying track 0, sector 0 (to move it
elsewhere) allowed me to examine this code.
This boot program simply loads data and the
program and JuMPs to the start of Cyclod at
$8EA6. When Cyclod is played. It constantly
JSRs to $400 to read in data for every level.
All I did was load in all the data and the game
and stopped the execution. After booting up a
slave disk I was able to save the game from a
normal DOS 3.3 disk. Now the difficult part
was to make the program fit in memory and run
correct ly.

I III! Ifl |1TY|^|I I I Mill■ I I I I | i i | l I I I Imi i
■ i i i l i l l I ' i i l l l u l l M i l l

P R E S E N T S

(m m m

m m m iLcamMCi; ■'■'WoMi'''"

I . . * I I I I I I I I I l i i i i I I I I I I I I n i l I I I n i l I I

C P R E S S S P R C E T O P L R V >
C C > C O P V R X C H T T S O l , S X R Z U S S O F T L J R R E , X H C

1 4 C O M P U T I S T N o . 3 8

5) Go into the monitor and make the following
m e m o r y m o v e s .

C A L L - 1 5 1
1 0 0 0 < 2 0 0 0 . 2 0 5 0 M
1 0 8 0 < 3 0 0 0 . 3 0 5 0 M
11 0 0 < 4 0 0 0 . 4 0 5 0 M
11 8 0 < 5 0 0 0 . 5 0 5 0 M
1 2 0 0 < 6 0 0 0 . 6 0 5 0 M
1 2 8 0 < 7 0 0 0 . 7 0 5 0 M
1 3 0 0 < 8 0 0 0 . 8 0 5 0 M

6) Save this data (this is a shortened form of
the data loaded in at every level).

BSAVE CYCLOD.DATA,A$1000,L$351

7) Insert the Cyclod disk. In the monitor you'll
get ready to boot trace Cyclod. The first
instruction disconnects DOS, the second clears
memory, and the third copies the boot ROM
t o R A M .

0 i B p i 0 i B i g
800:00 N 801<800.9000M
6600<C600 .C6FFM
6 6 F 8 : 0 0
6 6 0 0 G

8) Make the following memory patches to bootl
and execute it.

8 2 F : 1 4 N 8 5 9 : 1 8 N 8 6 D : 6 9 F F
300:A2 60 86 2B 4C 01 08
3 0 0 G

9) When you see the hi-res screen type the
following (you'll be typing blind to start with)
to modify Cyclod's boot program. Then execute

C 0 5 1
C 0 5 4
1 4 4 D : A 9 0 0
1 4 6 C : A 9 6 9
1 4 7 A : A 9 F F
1 7 2 C : 6 9 F F
3 0 0 : A 2 6 0 4 C I F 0 4

H i
h|hIh|
h|
H
H
H
i l l
HJ

h|i
i l l
II,
»
H
H
H
H
II
II
I I

4 0 0 < 1 4 0 0 . 1 7 F F M
3 0 0 G

10) Cyclod should now start loading. When it
is done, the computer will probably hang. Press
Reset to get into the monitor and make the
following memory move.

2 3 0 0 < 9 4 0 0 . A E 0 0 M

11) Insert Disk II and reboot.
6 I B P]

Now you have the bulk of Cyclod in memory.
Part n will create a program to properly execute
Cyclod and save everything in one file. It will
continue where you left off so don't change
anything!

Part II: Saving Cyclod

1) Enter the following hexdump. Check it
against the Listing that follows.

9 0 0 : 2 0 5 8 F C A 0 4 0 A 2 B 0 A 9
908:10 20 21 09 A0 23 A2 94
910:A9 IB 20 21 09 2C 50 C0
9 1 8 : 2 C 5 7 C 0 2 C 5 4 C 0 4 C A 6
920 :8E 84 07 86 09 AA A0 00
928:84 06 84 08 B1 06 91 08
9 3 0 : C 8 D 0 F 9 E 6 0 7 E 6 0 9 C A
938:D0 F2 60 4A 38 E9 01 85
9 4 0 : 1 9 A 0 B 0 A 2 4 0 A 9 0 C 2 0
948:21 09 A4 19 B9 66 09 85
950:07 B9 6D 09 85 06 A0 00
958:B1 06 99 00 40 C8 C0 48
9 6 0 : D 0 F 6 4 C A 6 8 E B C B C B D
9 6 8 : B D B E B E B E B F 0 0 8 0 0 0
970:80 00 80 00 80

0 9 0 0 - 2 0 5 8 F C J S R
0 9 0 3 - A 0 4 0 L D Y
0 9 0 5 - A 2 B 0 L D X
0 9 0 7 - A 9 1 0 I D A
0 9 0 9 - 2 0 2 1 0 9 J S R
0 9 0 0 - A 0 2 3 L D Y
0 9 0 E - A 2 9 4 L D X

0 9 1 0 - A 9 I B LDA #$1B
0 9 1 2 - 2 0 2 1 0 9 JSR $0921
0 9 1 5 - 2 0 5 0 0 0 B I T $0050
0 9 1 8 - 2 0 5 7 0 0 B I T $ 0 0 5 7
0 9 1 B - 20 54 00 B I T $0054
0 9 1 E - 4 0 A 6 8 E JMP $8EA6
0 9 2 1 - 8 4 0 7 STY $07
0 9 2 3 - 8 6 0 9 STX $09
0925- A A T A X
0 9 2 6 - A 0 0 0 LDY #$00
0 9 2 8 - 8 4 0 6 STY $06
0 9 2 A - 8 4 0 8 STY $08
0 9 2 C - B 1 0 6 LDA ($06) ,Y
0 9 2 E - 9 1 0 8 S TA ($08),Y
0930- 0 8 INY
0 9 3 1 - D0 F9 BNE $0920
0 9 3 3 - E6 07 INO $07
0 9 3 5 - E6 09 INO $09
0 9 3 7 - - OA DEX
0 9 3 8 - D0 F2 BNE $0920
0 9 3 A - 6 0 RTS
0 9 3 B - 4A LSR
0 9 3 C - 3 8 SEO
0 9 3 D - E 9 0 1 SBO #$01
0 9 3 F - 8 5 1 9 S TA $19
0 9 4 1 - A 0 B 0 LDY #$B0
0943- A2 40 LDX #$40
0945- A9 00 LDA #$00
0947- 20 21 09 JSR $0921
0 9 4 A - A 4 1 9 LDY $19
0 9 4 C - B9 66 09 LDA $0966,Y
0 9 4 F - 85 07 S TA $07
0 9 5 1 - B9 6D 09 LDA $096D,Y
0 9 5 4 - 8 5 0 6 S TA $06
0 9 5 6 - A 0 0 0 LDY #$00
0 9 5 8 - B 1 0 6 LDA ($06),Y
095A- 9 9 0 0 4 0 S TA $4000,Y
095D- 08 I N Y
095E- 00 48 OPY #$48
0960- D0 F6 BNE $0958
0962- 40 A6 8E JMP $8EA6
0965- BO BO BD LDY $BDBO,X
0 9 6 8 - BD BE BE LDA $BEBE,X
0 9 6 B - BF ???
0 9 6 0 - BF ???
0 9 6 D - 0 0 BRK
0 9 6 E - 8 0 ???
096F- 0 0 BRK
0 9 7 0 - 8 0 1 1 1
0 9 7 1 - 0 0 BRK
0972- 8 0 111
0973- 0 0 BRK
0974- 8 0 1 1 1

2) Make the following memory patches to the
main program of Cyclod:

8262 :20 3B 09
8 2 5 E : 0 0 E A E A E A
8 2 8 F : 0 0

3) Save the entire thing and test it out.
"A964 :FF" a l l ows DOS to BSAVE more than
$7F pages.

BLOAD CYCLOD.DATA,A$4C00
A 9 6 4 : F F
BSAVE CYCLOD,A$900,L$8D00
D E L E T E C Y C L O D . D A T A

There! You've got your own unprotected
Cyclod. You can re-use Disk I. Cyclod should
end up to be a 144 sector binary file.

I l l l l l l l l l l l

« » ■ s
i m i i i i i i i i i i i i n i

i i

I I I IMIII I I I

i."»: i=> niTTifinii

■ ; i ;

TTiillliiiiiirTiTTiniiiiiTini
E V E L 2 0 5

$FC58
#$40
#$B0
#$10
$0921
#$23
#$94

C O M P U T I S T N o . 3 8 1 5

Tra ck d o w n t h o se p e sky va r i a b l e s w i t h . . .

A p p a v a r e x
by Elwood J.C. Kureth

Req|uirements:
Applesoft
A program to be debugged

O n e o f t h e m i n o r i n c o n v e n i e n c e s a

prograntmer faces when coding in Applesoft is
the fact that Applesoft recognizes only the first
t w o c h a r a c t e r s o f a v a r i a b l e n a m e . C O M P A R E
and COUNT equate to the same variable name
as far as Applesoft is concerned, even though
the programmer may intend for them to be
totally different. This fact makes programming
in Applesoft somewhat frustrating because the
programmer must keep a much closer watch on
what var iab le combinat ions have been used.

In other versions of BASIC, KEEPTRACKl
and KEEPTRACK2 would be recognized as
separate variable names with (perhaps) different
v a l u e s . W h i l e t h e c h a n c e s o f s o m e o n e
mistakenly duplicating KEEPTRACKl as a
variable name are slim, it would be very easy
to unknowingly duplicate the first two letters
of KEEPTRACKl, with a variable name such
a s K E Y B R D .

One solution to the problem of keeping track
of variable names in Applesoft is to use a
lettering system such as AAname, ABname,
ACname, etc. Use the first two letters to
distinguish the variable name, and use the
remaining letters to identify the variable's
purpose. This solution certainly works, but even
so it's still possible to forget the last letter
c o m b i n a t i o n u s e d .

It was for the reasons previously mentioned
that I decided to write a short routine that would

help me keep track of my variable names. It
would list the names and, more importantly, all
t h e l i n e n u m b e r s w h e r e t h e n a m e o c c u r r e d .

First Thoughts

My original idea was to code the program
in Applesoft and recode it in machine language.
But after creating the Applesoft version, I
thought others might like to see how the
program works, and at the same time gain an
understanding of how a BASIC program is
stored in program text. So here, then, is the

BASIC program I call Appavarex, and an
explanation of its workings. The machine code
version may be presented in a future issue.

A b o u t B A S I C . . .

Before we look at Appavarex, let's take a
quick look at how Applesoft stores a BASIC
program in memory. It 's important to
understand how it's done if you are to
understand the workings of Appavarex.

Let's say, you key the following:
10 REM DEMO 20 PR I NT "DEMO" 30 FOR X=1T0 5: PR I NT

X:NEXTX40 END

Unless the programmer specifies where the
program is to be stored in memory, the
computer will begin storage at location $801,
or 2049 in decimal. Since most people are used
to working with numbers in decimal format, all
numbers will be displayed as decimal. Here's
how the program would be stored in memory:

A d d r V a l T r n s I A d d r V a l T r n s I
2049 1 2 2 0 6 0 24
2050 8

f
2 0 6 1 8

2 0 5 1 1 0 10 2 0 6 2 20 2 0
2052 0 2 0 6 3 0
2053 1 7 8 REM 2 0 6 4 1 8 6 PRINT

2054 3 2 2 0 6 5 3 4 I I

2055 6 8 D 2066 6 8 D
2056 6 9 E 2067 69 E

2057 77 M 2068 7 7 M
2058 79 0 2069 7 9 0
2059 0 2070 3 4 "

2071 0

A d d r V a l T r n s I A d d r V a l T r n s I
2072 41 2 0 8 9 47

2073 8 2 0 9 0 8

2074 3 0 30 2091 4 0 4 0
2075 0 2 0 9 2 0
2076 1 2 9 FOR 2093 1 2 8 END
2077 8 8 X 2 0 9 4 0
2078 208 =

2079 49 1 2095 0
2080 193 TO 2096 0
2081 53 5

2082 58
2083 186 PRINT
2084 8 8 X

2085 5 8
2086 130 NEXT

2087 88 X

2088 0

In the above table, "Addr" is the address
in memory, "Val" is the value stored at that
l o c a t i o n a n d " Tr a n s l " i s t h e B A S I C c o d e .

Each line of text that you type (that is,
terminated with a RETURN) is called a record
in program text. The first two bytes of each
record point to the next record in memory. The
bytes are in low byte/high byte order. In the
example above, the 12 and 8 equate to 2060 (12
+ (256*8)). Location 2060 then, is the starting

locat ion o f the nex t record . The above tab le
v e r i fi e s t h i s .

The next two bytes of each record represent
the BASIC line number.These two bytes are
also in low/high order. In the example above,
the 10 and 0 equate to 10(10 + (256*0)), the
first line number used in the demo program.

Each reserved word in Applesoft, such as
R E M , P R I N T, F O R , N E X T a n d E N D i s
represented by a single byte called a token. In
the example above, REM is represented by 178.
All Applesoft tokens have a value greater than
1 2 7 .

The remainder of the program is represented
by an ASCII value. For example, $ = 61, A
= 65, " =34 and 1 = 49. As stated in the

preceding paragraph, reserved words are
represented by a one byte number. Even though
the reserved word REM is represented by the
number 178, the letters R, E, and M have
ASCII values of 82, 69 and 77, respectively.
It's only when letters are grouped together to
form a reserved word that they lose their
individual ASCII identity. Look at the table
above to see other ASCII values for program
charac ters .

The end of each record is indicated by a zero
byte. Two consecutive zero bytes signal the end
of program text.

E n t e r t h e R e a l m

That's essentially all there is to program text.
And now, armed with an understanding of
BASIC program storage, let us venture forth
into the realm of Appavarex.

You will find the complete listing of the
Appavarex program at the end of this article,
but as we go through the program here I will
b r e a k i t d o w n i n t o s e c t i o n s f o r e a s e o f
explanation. So let's begin.
120DIMNAME$(200),LINE$(200)
130 NUM = 1
140 ADDRESS = 2049

1 6 C O M P U T I S T N o . 3 8

Line 120 dimensions two subscripted
variables that are used in the program. These
variables will be explained as we run across
them in the program. Line 130 simply initializes
a key variable. NUM, which is used as a
counting mechanism (to increase the subscript
number of the subscripted variables). Line 140
sets the address to be read from to 2049. This
is the usual starting place for a BASIC program.
150 QUOTE = 0:D1TA = 0:R1EM = 0
160 LINE = PEEK (ADDRESS + 2) + 256 * PEEK

(ADDRESS+ 3)
170VTAB12: HTAB21: PRINTLINE
180 NXTLINE = PEEK (ADDRESS) + 256 * PEEK

(ADDRESS+1)
190 ADDRESS = ADDRESS + 4

Lines 150 through 190 are executed before
each program line that is scaimed for variables.
First, the quote flag, data flag and rem flag
(QUOTE, DITA, RIEM) are cleared which
means that we are not between quotes, after a
D ATA s t a t e m e n t o r a f t e r a R E M s t a t e m e n t .
Next, the line number of the current BASIC line
is calculated and stored in the variable LINE.
The line number calculated in line 160 is then

printed on the screen so that you can see that
Appavarex is working. NXTLINE is then
equated to the starting memory location of the
next program line. Finally, 4 is added to the
address pointer so that it is pointing to the first
byte in the BASIC program line.
200 BYTE = PEEK (ADDRESS)
210 IF BYTE = 58 AND NOT QUOTE AND NOT RIEM THEN

DITA = 0 ; GOTO 260
220 IF BYTE = 34 THEN QUOTE = 1 - QUOTE : GOTO 260
230 IF BYTE = 178 THEN RIEM = 1 : GOTO 260
240 IF BYTE = 131 THEN DITA = 1 : GOTO 260
250 IF BYTE > 64 AND BYTE < 91 AND NOT QUOTE AND

NOT DITA AND NOT RIEM THEN 300
260 ADDRESS = ADDRESS+1

We now enter the main line scan loop. Line
200 simply equates BYTE to the value found
at the current address we are scanning.

Line 210 tests for a colon. If a colon is found
and it is not between quotes and not after a REM
command, then the data flag is cleared. This
is done in case the program we are scanning
has data and program code on the same line.

Line 220 tests for a quote. If one is found,
then the quote flag is toggled (from 0 to 1 or
from 1 to 0). During the operation of the
program, if QUOTE is equal to 1, then we are
between quotes.

Line 230 tests for a REM command. Even

though the REM word is tokenized, any
characters after it will appear as individial
ASCII values. If a REM is found, we must
therefore turn on a flag so that the bytes
following the REM won't be mistaken as
variable names. The rem flag is only cleared
by line 150 so it will stay on untU then next line
is scanned.

L ine 240 tests for a DATA command word
and for the same reason as the rem flag is turned
on, turns on the data flag if one is found.

Line 250 tests to see if the byte we are on
is the start of a variable name by first checking
to see if it is in the A through Z range (65 -

90) and secondly, making sure we aren't
between quotes, after a DATA statement or
after a REM statement. If all these conditions
are true, then the execution continues at line
300 where the variable and the line it was found
on will be collected into the arrays. We'll talk
about the routine at 300 later.

Line 260 increments the address pointer so
that we can look at the next byte in the program
code .

270 IF ADDRESS < NXTLINE - 1 THEN 200
280 IF PEEK (ADDRESS) = 0 AND PEEK (ADDRESS+1)

= 0 THEN 440
290 ADDRESS = ADDRESS +1 : GOTO 150

Line 270 checks to see if we are at the start
of the next line yet. If we are not, then execution
continues at line 200 where the next byte of
program code is evaluated.

When execution hits line 280, we are at the
start of a new line. Line 280 therefore
determines whether or not there are two
consecutive zero bytes. If so, Appavarex has
reached the end of the BASIC program and
jumps to line 440 where it begins preparing the
variables and line numbers for display. More
on that la ter.

At line 290, since we are not yet through with
all of the program text, the address is
incremented by one (to skip over the end of
record zero byte) and execution continues at the
main scan loop.

300 NAMES = ""
310 NAMES = NAMES + CHRS(BYTE)
320 IF BYTE = 36 AND PEEK (ADDRESS+1) <> 40 THEN

ADDRESS = ADDRESS +1; GOTO 390
330 ADDRESS=ADDRESS+1: BYTE=PEEK (ADDRESS)
340 IF BYTE = 40 THEN NAMES = NAMES + "(*)":

ADDRESS = ADDRESS +1: GOTO 390
350 IF BYTE < 36 OR BYTE > 90 THEN 390
360 IF BYTE > 37 AND BYTE < 48 THEN 390
370 IF BYTE > 57 AND BYTE < 65 THEN 390
380 GOTO 310

This series of lines seeks out the name of the
variable we have found and places it in
NAMES. Line 300 simply nulls the string that
wi l l conta in the var iab le name.

Line 310 adds to the end of NAMES the
ASCn character at the current address which
is part of the variable name.

Line 320 checks to see if the character we

just added to the string was a dollar sign and
that it isn't followed by an open parenthesis.
If this is the case, then the variable we just got
the name for is a string type and execution
continues at 390. This l ine is here so that a
command s imi la r to "PRINT DSAS" wi l l
register both DS and AS rather than one variable
named DSAS.

Line 330 increments the current address and
sets BYTE equal to the value found at the
current address.

Line 340 checks for an open parenthesis. If
one is found, then the variable name is an array
type and the symbols "(♦)" are added to the
end of the name. Execution then continues at
3 9 0 .

Lines 350 through 370 check the appropriate
ranges to insure that the next byte is still part

of the variable name. If any of the IF statements
in lines 350 through 370 are true, then the next
byte is not part of the variable's name and
execution continues at line 390.

Line 380 goes to 310 to add the character to
the name of the variable since it checked out
correctly.
390 FOR CHECK = 1 TO NUM - 1
400 IF NAMES ̂ NAMES (CHECK) THEN LINES (CHECK)

= LINE(CHECK) +STRS (LINE) + "" ; CHECK =
NUM : NE)(T : GOTO 270

410 NEXT
420 NAMES(NUM) = NAMES : LINES(NUM) =

STRS(LINE) +" "
430 NUM = NUM +1 : GOTO 270

Once a character other than a letter or a
number.has been found, Appavarex has reached
the end of the variable name. The program
jumps to line 390, where the variable name
contained in NAMES is compared with all the
var iab le names found so far.

If the variable is not found, its name is
dumped into a subscripted variable called
NAME$(NUM) and the string equivalent of the
line where it was found is put into the array
LINES (this occurs in line 420). The counter
of the number of variables found is incremented
and control goes back into the main scan loop.

If the variable name has already been found,
then line 400 adds to the LINES that is
associated with the variable name, the string
equivalent of the line number where the other
occurrance of the variable was found (the
current line).

440 VTAB 12: HTAB 1: PRINT "SORTING DATA" SPC
(40)

450 FLAG = 0
460 FOR CHECK = 1 TO NUM -2
470 IF NAMES (CHECK) < NAMES (CHECK +1) THEN 500
480 FLAG = 1: TEMPS = NAMES (CHECK):

NAMES(CHECK) = NAMES(CHECK + 1):
NAMES(CHECK+1) = TEMPS

490 TEMPS = LINES(CHECK): LINES(CHECK) =
LINES (CHECK +1): LINES (CHECK + 1) = TEMPS

500 NEXT: IF FLAG THEN 450

Once the end of program text has been
reached, the main control loop directs
Appavarex to LINE 450. At this point all
va r iab le names and the i r l i ne numbers have
been identified. It is now necessary to sort the
names in alphabetical order. Lines 450 through
500 are a typical bubble sort routine.

The remainder of the program is pretty
straight forward. Lines 510 through 530 ask you
what the name of the program you are
examining and whether you want the printer on
during print out or not.

Lines 540 through 590 simply print the
variable names and their corresponding line
numbers. One point to note is that if a variable
name appears more than once in a BASIC
program line, that line number will appear after
the variable name the same number of times the
name appears in the line. Example:

COUNT - 15 8000 8000 8010

In this example, the variable name COUNT
appears in lines 15, 8000 (twice) and line 8010.

C O M P U T I S T N o . 3 8 1 7

Typing it In
First, type in the Appavarex program and

s a v e i t ;

S A V E A P P A V A R E X

Next, type in the Install Maker program.
When this program is run, it will create a text
file that can be EXECed. This text file moves
the pointer to the start of BASIC text after any
program that happens to be in memory and then
RUNs Appavarex.

Using Appavarex
Always type

F P

before using Appavarex! This sets the start of
BASIC pointer to $801 (2049), which is where
line 140 is expecting to find the start of the
program. If you just

R U N A P P A V A R E X

it will document the variables used in itself. Try
it. You should get:
NAME OF FILE:APPAVAREX

ADDRESS - 140 160 160 180 180 190 190 200
260 260 270 280 280 290 290 320 320 320
330 330 330 340 340

BYTE - 200 210 220 230 240 250 250 310 320
330 340 350 350 360 360 370 370

CHECK - 390 400 400 400 400 460 470 470
480 480 480 480 490 490 490 490 550 560
560 580

DITA - 150 210 240 250

FLAG - 450 480 500

LINE - 160 170 400 420

LINE$(*) - 120 400 400 420 490 490 490
490
560

NAME$ - 300 310 310 340 340 400 420 520
540

NAME$(«) - 120 400 420 470 470 480 480
480
480 560

NUM - 130 390 400 420 420 430 430 460 550

NXTLINE - 180 270

QUOTE - 150 210 220 220 250

RIEM - 150 210 230 250

TEMP$ - 480 480 490 490 530 530

To d o c u m e n t t h e v a r i a b l e s o f a n o t h e r

program, first type FP and then
LOAD program

where "program" is the name of the program
you wish to document. Finally, type:

E X E C I N S T A L L

This will move the start of BASIC pointer to
the end of the program in memory and run
Appavarex. When you're done, it is a good idea
to type:

F P

again to insure that the start of BASIC pointer
is correctly set.

I n t h e F u t u r e . . .

I am currently working on a machine
language version of Appavarex. It may be
published in an upcomming issue of
COMPUTIST. Until then, I hope you have
enjoyed this trip down "memory" lane.

Appavarex
10 REM APPLESOFT
20 REM PROGRAM
3 0 R E M VA R I A B L E
4 0 R E M E X T R A C T O R
50 REM
60 REM BY
70 REM ELWOOD J.C. KURETH
80 REM
90 REM
100 TEXT : HOME : PRINT "APPAVAREX" : PRINT :

HTAB12 : PR I NT "BY' ELWOOD' J. C.' KURETH"
110 VTAB 12 : PRINT "NOW' WORKING' ON' LINE"
120DIMNAME$(200) ,LINE$(200)
130 NUM = 1
140 ADDRESS = 2049
150QUOTE = 0 :D1TA = 0 :R1EM = 0
160 LINE = PEEK (ADDRESS + 2) + 256 * PEEK

(ADDRESS + 3)
170 VTAB 12 : HTAB 21 : PRINTLINE
180 NXTLINE = PEEK (ADDRESS) + 256 * PEEK

(ADDRESS +1)
190 ADDRESS = ADDRESS + 4
200 BYTE = PEEK (ADDRESS)
210 IF BYTE = 58 AND NOT QUOTE AND NOT RIEM THEN

D1TA = 0 : GOTO 260
220 IF BYTE = 34 THEN QUOTE = 1 - QUOTE : GOTO 260
230 IF BYTE = 178 THEN RIEM = 1 : G(iTO 260
240 IF BYTE := 131 THEN DITA = 1 : GOTO 260
250 IF BYTE > 64 AND BYTE < 91 AND NOT QUOT̂ AND

NOT DITA AND NOT RIEM THEN 300
260 ADDRESS = ADDRESS+ 1
270 IF ADDRESS < NXTLINE - 1 THEN 200
280 IF PEEK (ADDRESS) = 0 AND PEEK (ADDRESS + 1

) = 0 THEN 440
290 ADDRESS = ADDRESS + 1 : GOTO 150
300 NAMES = ""
310 NAMES = NAMES + CHRS (BYTE)
320 IF BYTE = 36 AND PEEK (ADDRESS +1) <> 40 THEN

ADDRESS = ADDRESS + 1 : GOTO 390
330 ADDRESS = ADDRESS +1: BYTE = PEEK (ADDRESS)
340 IF BYTE = 40 THEN NAMES = NAMES + "(*)"

: ADDRESS = ADDRESS + 1 : GOTO 390
350 IF BYTE < 36 OR BYTE > 90 THEN 390
360 IF BYTE > 37 AND BYTE < 48 THEN 390
370 IF BYTE > 57 AND BYTE < 65 THEN 390
380 GOTO 310
390 FOR CHECK = 1 TO NUM-1
400 IF NAMES = NAMES (CHECK) THEN LINES (CHECK)

= LINES (CHECK) + STRS (LI NE) +"'" : CHECK
= NUM : NEXT : GOTO 270

410 NEXT
420 NAMES (NUM) = NAMES : LI NES (NUM) = STRS (LI NE

) + "' "
430 NUM = NUM + 1 : GOTO 270

440 VTAB 12 : HTAB 1: PR I NT "SORT ING' DATA" SPC(
4 0)

450 FLAG = 0
460 FOR CHECK = 1 TO NUM - 2
470 IF NAMES (CHECK) < NAMES (CHECK+1) THEN 500
480 FLAG = 1 :TEMPS = NAMES(CHECK) : NAMES (CHECK

) = NAMES(CHECK + 1) :NAMES(CHECK + 1) =
TEMPS

490 TEMPS = LINES(CHECK) :LINES(CHECK) =
LI NES (CHECK +1) : LI NES (CHECK +1) = TEMPS

500 NEXT : IF FLAG THEN 450
510 HOME : NORMAL : PRINT "APPAVAREX' -' by'

E l w o o d ' J . C . ' K u r e t h "
520 VTAB 4 : INPUT "NAME' OF' FILE=>" ;NAMES
530 PRINT : PRINT : INPUT "TURN' ON' PRINTER?"

; TEMPS : IF LEFTS (TEMPS . 1) =" Y" THEN PR#
1

540 HOME : PR I NT "NAME' OF' FILE:" NAMES : PR I NT
: PRINT

550 FOR CHECK = 1 TO NUM - 1
560 PRINT NAMES (CHECK) "' -' " LI NES (CHECK)
5 7 0 P R I N T " "
580 NEXT CHECK
590 PR# 0 : END

I n s t a l l M a k e r

10 PR I NT CHRS (4) "OPEN' INSTALL" : PR I NT CHRS
(4) "WRITE' INSTALL"

20 FOR A = 1 TO 4 : READ AS : PRINT AS : NEXT
30 PRINT CHRS (4) "CLOSE"
40 DATA "P0KE(PEEK(176)+1) *256,0"
50DATA"POKE104,PEEK(176)+1"
60 DATA NEW ,RUN' APPAVAREX

Appavarex checksums

10 - SBADD 310 - SE1F8
20 - S9B13 320 - S9983
30 - S4D3B 330 - S2179
40 - SAD92 340 - S9D28

50 - SC899 350 - S20DD

60 - SFF65 360 - SE888
70 - SA3BF 370 - SBCAl
80 - $A900 380 - S8B82
90 - S924D 390 - S5C3A
100 - S9EB2 400 - S49AA

110 - SBC38 410 - SA200
120 - SAB0D 420 - SC40B

130 - S559A 430 - S2E92
140 - SD90B 440 - SA564
150 - S26B6 450 - S479E

160 - S60B6 460 - SB627

170 - SE9E6 470 - S9AC9

180 - SB9CD 480 - SCE62
190 - SB166 490 - SB715
200 - SE067 500 - S6776
210 - SF42F 510 - SA510

220 - S117B 520 - SEC34
230 - SB0A2 530 - SB8A4

240 - S493D 540 - S7858
250 - S5ED4 550 - SFEE3
260 - S1B05 560 - S3A63
270 - S368A 570 - SD237
280 - SFD47 580 - S9B27

290 - S61CF 590 - SD80C

300 - S8A03

1 8 C O M P U T I S T N o . 3 8

s o f t l c e y f o r. . .

A l t e r n a t e R e a l i t y
by Stephen Lau

Scanning this code, I found the following:
$686F:

Datasoft Inc.
9 4 2 1 W i n n e t k a Av e

Chatsworth, CA 91311

Requirements:
Apple][with 64K
Super lOB vl.5

Alternate Reality is the first in a new series
of fantasy games by Datasoft. Because of the
large amount of disk access during the game,
I decided to make a backup copy of it. EDD
will produce a copy that will constantly tell you
to insert the original disk during play. This then
prompted me to deprotect the program.

Going About It
Using the CIA, I found that track 0, sector

0 of both s ides are normal and al l the other
s e c t o r s o n t h e d i s k h a v e a b a d fi e l d d a t a
checksum. Next, I booted the disk. Resetted
into the monitor when the text logo appeared
and scanned through memory.

I found a working copy of the RWTS starting
at $800 instead of $B800. When I compared this
RWTS with the normal one, I found that only
one significant byte (in the translate table) had
been changed. This then explained the bad data
fi e l d c h e c k s u m .

I then created a Super JOB controller that
read with the strange translate table and wrote
with the correct one. Unfortunately, the
resulting disk wouldn't boot.

The Nitty Gritty
It was then time to get tough with the disk,

so I challenged it to a boot code trace. I quickly
f o u n d t h e c o d e t h a t m o d i fi e s t h e n o r m a l
translate table at $36C-$3D5 (created by a
rout ine in the disk contro l ler card before the
boot process) to read the strange sectors on my
Alternate Reality disk. After NOPing the bytes
that alter the translation table, the disk booted
all the way to the main menu and the dreaded
"Insert the original disk" message appearred.

My Replay card then told me that the
program was running somewhere near $68AE.

BIT $C054
BIT $C050
BIT $C057
BIT $C052
BIT $C081
BIT $C081
JSR $5F6E
JSR $744F
BCC $6889

D I S P L AY H I - R E S
PAGE 1

WRITE ENABLE
THE RAM CARD
CLEAR HI-RES SCREEN
CHECK THE DISK
IF OK THEN
BRANCH TO $6889

c o n t r o l l e r

To defeat this, I changed the JSR $744F to
a IMP $68B9. This worked unt i l I entered an
inn. Using similar techniques, I discovered that
another disk check was at $D2F9 which does
a JSR to $DE5E. Removing this in a similar
fashion produced a seemingly perfect backup.

I then discovered that the "Backup" function
provided on Alternate Reality would not work.
So, after a little more work I came up with a
few sector edits that fixed this minor difficulty.
I then incorporated all these sector edits into
my Super JOB controller and the resulting disk
worked perfectly!

Step by Step
1) Capmre the RWTS by boot code tracing the
original disk.

C A L L - 1 5 1
9600<C600 .C6F7M
96F8:A9 4B 8D 61 08 A9 58 8D
9700:62 08 A9 FE 8D 63 08 4C
9 7 0 8 : 0 1 0 8
9 6 0 0 G
1 9 0 0 < 8 0 0 . F F F M

Insert your original disk and type:
6 B P 1
C A L L - 1 5 1
2 9 0 0 < B 8 0 0 . B F F F M
2 B 2 9 < 1 B 2 9 . 1 B F F M
I B B I
BSAVE ALT.RWTS,A$2900,L$800

2) Type in the controller at the end of this article
and use it to deprotect Alternate Reality.

3) Remeber to format the bout side with a
volume of 2 and the other side with a volume
o f 3 .

That's it, have fun with your backup!

1000 REM ALTERNATE REALITY
1002 TEXT : HOME : PR I NT " BOOT' SIDE' OR' SIDE'

TWO' ?' " ;
1003GETA$: IFA$<>"B"ANDA$<>"2"THEN1002
1004 BK = 0 : IFA$ = "2"THENBK=1
1006 POKE 775 ,96 : ONERR GOTO 550
1010TK = 0:LT = 35:ST=15 :LS=15 :CD = WR:FAST

= 1

1020 GOSUB 360 : GOSUB 490 : GOSUB 610
1021 IFBKTHEN 1030
1022 IF TK = 0 THEN GOSUB 5000
1024 IF TK = 14 THEN GOSUB 5010
1026 IF TK = 21 THEN GOSUB 5020
1030 GOSUB 360 : GOSUB 490 : GOSUB 610 ; IF PEEK

(TRK) = LT THEN 1050
1040 TK = PEEK (TRK) : ST = PEEK (SCT) : GOTO 1020
1050POKE 775 ,176 :TK = 0 :LT=1 :ST = 0 :LS=15

:CD = WR :FAST = 0
1060 GOSUB 490 : GOSUB 610
1065 I FBK = 0 THEN GOSUB 5030
1070 GOSUB 490 : GOSUB 610
1080 HOME : PRINT "COPYDONE" : END
5000 A$ = "3429:96 ' 97 ' N ' 3449:D6 ' D7 ' N '

3496:0' 1' N' 34D6:20' 21" : GOTO 5040
5010 A$ = "29 7B:EA' EA' EA' EA' EA' EA' EA' EA'

EA' EA' EA' EA' N' 298E: EA' EA' EA' EA' EA'
EA' EA' EA' EA' EA' EA' E : GOTO 5040

5020 A$ = "4D84: EA' EA' EA' F0' N' 69F9: EA' EA'
EA' F0" : GOTO 5040

5030 A$ = "2707:EA' EA' EA' EA' EA' EA' N'
2 7 2 7 : E 9 ' E 9 ' E 9 ' E 9 ' E 9 ' E 9 "

5040 A$ = A$ + "' N' D9C6G" : FOR A = 1 TO LEN (A$
) :P0KE511+A, ASC(MID$ (A$,A,1))+128

5050 NEXT : POKE 72 ,0 : CALL - 144 : RETURN
10010 PRINTCHR$ (4) "BLOAD' ALT.RWTS"

c o n t r o l l e r c h e c k s u m s

1 0 0 0 - $356B 1 0 5 0 - $43E3
1 0 0 2 - $8297 1 0 6 0 - $0ED6
1 0 0 3 - $0074 1 0 6 5 - $D163
1004 - $6AB1 1070 - $366D

1006 - $CD45 1080 - $F821

1010 - $A3AC 5000 - $C1F8

1020 - $4EE1 5010 - $09F9

1021 - $1952 5020 - $8890

1022 - $2FBF 5030 - $3AF8

1024 - $AA90 5040 - $F792

1026 - $F759 5050 - $3268

1 0 3 0 - $C5CD 10010 - $E8EF
1 0 4 0 - $F8EB

C O M P U T I S T N o . 3 8 1 9

Adding to DOS 3.3 a. . .

R A M d i s k
by Robert Knowles

Requirements:
Apple //e with extended 80 column card
D O S 3 . 3 o r s i m i l a r

If you have an extended 80 column card (64K
or more) and ProDOS, you may have had a
chance to use the /RAM volume ProDOS
automatically installs in the auxiliary RAM.
Slick, isn't it? Well, if you don't have, don't
like, or can't use ProDOS, you can still use the
extra RAM as a simulated disk drive under DOS
3.3. This article will show you how to use most
of that RAM as a RAMdisk with a short
relocatable routine that intercepts the RWTS
and fools DOS into thinking there is a disk drive
in slot 3 (or wherever).

T h e A u x R A M

Normally, the auxiliary ("aux" or "card")
RAM cannot be used by Applesoft or DOS 3.3.
You probably found this out after you bought
it. Machine language programming is required
to get the most out of the aux RAM. This part
of the article is not necessary for the proper care
and feeding of the RAMdisk, but may help in
understanding what's going on.

If you followed through the article "More
Rom Running" by Wes Felty (COMPUTIST
No. 34), you should be familiar with how the
language card built into the //e and //c works.
The language card parallels the Apple's ROM
space with 12K of RAM, which you can write
data to while reading from the ROM, or select
to replace the ROM. The auxiliary RAM works
i n a s i m i l a r m a n n e r. T h e a u x R A M c a n b e

thought of as having a second language card and
a second lower 48K of RAM. When you set
a few soft switches, you can, in effect, replace
t h e R A M o n t h e m a i n b o a r d w i t h t h e R A M o n
the 80 column card. The following switches
affect the read/wri te status of the banks:

a d d r e s s n a m e funct ion

$0002 RDMAINRAM read from main 48K
$0003 RDCARDRAM read from card 48K
$C004 WRMAINRAM w r i t e t o m a i n
$0005 WROARDRAM w r i t e t o c a r d

$0008 SETSTDZP use main Icard/zpage
$0009 SETALTZP use aux Icard/zpage

The Apple starts up with main RAM both read
and write enabled. When you activate $C005

by storing a byte there, your program will be
able to read from main RAM and write to aux
RAM. This is handy for copying data from one
bank to the other. However, if you set $C003,
your computer will crash because it will be
attempting to run a program that suddenly
disappears with the RAM it was originally
reading. A program can only run if the
computer can read the locations it is stored at.
To counteract this, you could duplicate your
whole program to the other bank before you
switch ,̂ but that would be a bit wasteful.

When the 48K sec t ion o f the aux RAM is
selected, ($C003 and $C005) the lower 48K of
main RAM will be replaced by "the other lower
48K." If the language card area is switched
($C009), it will be replaced with "the other
language card."

Apple Corp. to the Rescue
Luckily, Apple has provided ROM routines

to save us some trouble when moving memory
and transferring program control between
banks. At $C3I I is a routine called MOVE, or
AUXMOVE, that works just like the monitor's
MOVE routine with the exception that the code
is transferred between banks, the direction of
the transfer dependent on the carry flag. To
operate this, the starting address of the block
of memory to be moved is stored in locations
$3C and $3D. The last address to be moved is
placed at $3E-$3F, and the target rddress in the
opposite bank is placed at $42-$43. If the move
is from main to auxiliary, the carry flag must
be set. For the other direction, the carry must
be clear. Cal l th is rout ine with a JSR.

If you are really adventurous, the last two
soft swi tches l is ted in the table above select
whether you are using the language card from
the main RAM or the aux RAM. At the same
time, the zero page and stack ($000-$IFF) are
switched also. This means that the auxiliary
language card area will have its own private
zero page and stack! This also means extreme
caution is in order when you switch memory
a r o u n d . T h e o t h e r a u x R A M - r e l a t e d r o u t i n e i s
called XFER ($C314). When this is called, you
specify the address in aux or main memory to
go to, and which language card/zero page you
want. Some interesting effects can be performed
using this. A full discussion of this feature is
beyond this article for now. You can read more
about i t in the / /e Reference Manual .

Hopefully, that will help clarify a few things
to provide a background for the RAMdisk
explanation that follows.

T h e R A M d i s k

The RAMdisk works by simulating a disk
drive in slot 3 drive 1, and storing the "sectors"
in the auxiliary RAM rather than on a disk. It
attaches itself to DOS by making DOS' JSR to
the RWTS entry point to the RAMdisk driver
instead. When called by DOS, the RAMdisk
saves the location of the lOB table and checks
to see if the sector requested is from slot 3. If
the lOB is not for slot 3, then it restores the
processor registers and JuMPs to the original
RWTS, pretending nothing has happened.

If the request IS for slot 3, then it checks to
see if the drive number is 1 and sets an I/O error
if it is not. The "last slot", "last drive", and
"last volume" in the lOB are set up and the
real fun begins. The track and sector numbers
are converted into an address for the aux bank
a n d s t o r e d i n t h e " s o u r c e s t a r t " l o c a t i o n

($3C,$3D) for the ROM routine MOVE
($C311). The DOS buffer address is copied to
the "target address" location ($42,$43). Then
the RWTS command is checked. If the code is
$02 (write) then the "source" and "target" are
swapped so that the data in the buffer will be
sent to the aux RAM instead of being fetched
from the RAM. If the code is $01 (read) then

* J j c

* R A M D I S K D R I V E R *
* F O R 1 2 8 K / / E O R / / C , D O S 3 . 3 *
* B Y R . A . K N O W L E S *
* *

* C O P Y R I G H T 1 9 8 6 S O F T K E Y P U B L I S H I N G *
* #

C311- MOVE .EQ $0311 ENTRY PT, FOR CROSSBANK MOVE
BD00- NXT.RWTS .EQ $BD00 LOCATION OF REAL RWTS
B7B8- HOLE .EQ $B7B8 LOCATION OF 'JSR $BD00'
003C- AIL .EQ $3C MONITOR SCRATCHPAD LOCATIONS
003D- AlH .EQ $3D
003E- A2L .EQ $3E
0 0 3 F - A 2 H . E Q $ 3 F
0042- A4L .EQ $42 ALSO USED AS FILENAME POINTER
0 0 4 3 - A 4 H . E Q $ 4 3

.OR $6000

.TF OBJ.RAMDISK

2 0 C O M P U T I S T N o . 3 8

INSTALL SEC
LDA $9000 DROP BUFFERS BY LENGTH
SBC #LAST-RAHOISK -OF RAHOiSK CODE
STA $9000
LOA $9001
SBC /LAST-RAMOISK (HI BYTE)
STA $9001
CLC
LOA $9000 STORE BUFFER START+$26 AT A1
AOC #$26
STA AIL
LOA $9001
AOC #0
STA AlH
LOY #LAST-RAMOISK

.1 LOA RAHOISK.Y COPY RAHOISK TO NEW LOC
STA (A1L),Y
OEY
CPY #$FF
BNE .1

PAT C H L O A A I L S TO R E A O O R O F R A H O I S K
STA HOLE IN PLACE OF REAL RWTS' AOOR
LOA AlH
STA HOLE+1
JHP $303 COLOSTART DOS, RAHOISK IS UP!

RAHOISK STY $48 STEAL DOS' SPOT FOR STORAGE
STA $49

S L O T L O Y # 1 F E T C H S L O T # F R O H I O B
LOA ($48),Y
C H P # $ 3 0 S L O T 3 ?
BEQ SETSLOT YEP, CONTINUE BELOW

TO.NEXT LOA $49
LOY $48
JHP NXT.RWTS

lOERR LDA #$40
LOY #$00
STA ($48),Y
SEC
RTS

SETSLOT

VOLUHE

GET.TRK

GET.SCT

CONVRT

#$0F
($48),Y
#$00
#0
($48) ,Y
#2
($48),Y
#$01
lOERR

#$10
($48),Y
#$0E
#$FE
($48),Y
#$04
($48),Y
#$11
lOERR
#$1C
lOERR
#$05
($48),Y
#$F0
lOERR

A4L

ELSE RESTORE ASY AND RETURN

DRIVE ERR

SHOW ERR BEFORE RETURNING

SET 'LAST SLOT'

TURN ERROR INDICATOR OFF

GET DRIVE NO.
DRIVE 1?
NOPE

COPY DRIVE NO. TO 'LAST DRIVE'
SET 'LAST VOLUHE'

GET DESIRED TRACK NO.

HIN.TRACK?

HAX.TRACK?

IOB SECTOR

LESS THAN $10?

A4 IS USED BY DOS,
SO WE HUST SAVE IT

the swap is not made. After that, the carry is
set for the proper MOVE direction and the
MOVE routine is called. After the transfer, the
program returns to DOS with an RTS.

On the Right Track
The main puzzle in writing the RAMdisk was

how best to fake a floppy disk in RAM. I
decided to convert the track and sector numbers
almost directly into memory addresses. Since
there are 16 ($0F) sectors per track, the track
number could be used as Ae base address to
start with. However, It was also logical to keep
track $11 in the continuous block of RAM so
that the program would not have to have a
special routine to simulate track $11. Sooo...
the high nibble of the track number will be
ignored and the VTOC of the "disk" will show
the unuseable sectors as unavailable to DOS.
The RAMdisk driver takes the track number,
ASLs it (shifts left) four times, which loses the
four high bits. The sector niunber is ORed with
the result, and that is used as the high byte of
the address. It works out so that track $10 sector
$0 becomes $0000 in memory, all the way up
to track $1F sector $F becoming $FF00.

For this program, I did not use all of the
RAM in the auxiliary bank. To keep the routine
short, only the memory from $10(M to $BFFF
is used. The memory above that is in the
language card area. The programming
headaches involved in copying memory
between 4K bank 1 of language card RAM and
4K bank 2 of auxiliary language card RAM
were not worth the trouble at the time this was
written. On the lower end of RAM, pages 0-1
are reserved for the zero page and stack, and
$400-7FF should be set aside for 80 column
text. These locations could be reserved by
marking them as "used" in the VTOC, but an
easier method is to simply ignore track $10.
This pares the RAMdisk space down to tracks
$11-$1B in its present form but that's plenty
for most purposes.

T h e H o o k

The RAMdisk program consists of two parts;
an installer ($6000 - $6038) and the RAMdisk
driver ($6039 - $60E1). The RAMdisk driver
is relatively small and could be tucked almost
anywhere in RAM (it's written to be location
independent) provided you correctly hooked it
t o D O S .

However, if you're like most people, you
already have a favorite program at $300, and
if you're using a speed-enhanced DOS, the best
locations inside DOS are taken. This is why 1
created the installer portion which places the
RAMdisk driver between DOS and its buffers.
This is accomplished by checking the current
locaticm the IX)S buffers, moving them down
by the length of the RAMdisk driver ($A9
bytes), and copying the driver to just above the
new location, fdlowing $26 extra bytes for the
DOS buffer's filename.

To connect the RAMdisk driver to DOS, the
installer stores the address of the RAMdisk
driver at location $B7B8, which is the operand
of die JSR $BD00 instruction at $B7B7, turning

C O M P U n S T N o . 3 8 2 1

it into a JSR $xxxx (where xxxx is the location
of the driver) instead.

The installer then re-enters DOS through its
coldstart vector at $3D3.

INlTially speaking
The RAMdisk will not accept the RWTS

command code for ENTTing, returning instead
with an I/O error. To initialize the RAMdisk,
a formatting routine is provided here (Listing
#2). It will start by creating two empty catalog
sectors in track $11, enough room for fourteen
filenames. It then proceeds to create a VTOC
for the disk, making it look just like a regular
floppy, with the exception that only tracks $12
through $1B plus the unused sectors in track
$11 are marked as free. DOS' file manager will
only bother to try to allocate the free sectors,
and will only be reading sectors from those in
the track/sector lists with the files, so it won't
try to use nonexisting sectors.

Keying it In
To get your RAMdisk up and running, first

boot up with DOS 3.3 or a fast substitute. Type
in hexdump #1 and save it.

BSAVE RAMDISK,A$6eee,UE2

Type in hexdump #2 and save it.
BSAVE RAMFORMAT,A$6eee,L$93

To use the RAMdisk, type (in either order):
B R D N R A M D I S K
B R U N R A M F O R M A T

LDY
LDA
ASL
ASL
ASL
ASL
I NY

ORA
STA
LDA
STA
LDY
LDA
STA
I NY
LDA
STA

GETCMD LDY
LDA
BEQ
CMP
BOS
CMP
BEQ

SWAPADRS LDA

#$04
($48),Y

($48).Y
AlH
#0
A I L
#$08
($48),Y

A4L

($48),Y
A4H
#$0C
($48),Y
NOERR
#3
lOERR
#1
MAKE.A2
A I L
A4L
A4L
A I L
A l H
A4H
A4H
AlH

TURN TRACK & SECTOR INTO
HI BYTE OF SOURCE ADDR:
(ASSUMING READ)
MUL TRACK BY 16
($lx = $X0)

POINT TO I OB SECTOR#
MIX WITH 'TRACK-
STORE TRK&SCT IN A1 (SOURCE)

SOURCE= $xx00
MOVE BUFR ADDR TO A4 (TARGET)

I OB COMMAND

SEEK CMD, IGNORE
I NIT OR BAD CMD?

THEN EXIT
READ?
DON'T SWAP IF SO
'WRITE' GOES OTHER WAY
SO ADDRESSES MUST BE
SWITCHED

MAKE.A2
ADD $FF TO SOURCE (Al)
TO CREATE SOURCE.END

N o t e s & C a u t i o n s

I hope the RAMdisk will come in handy.
Most programs should not have any problem
using it. DiskEdit and Super lOB have both
been tested on it, and none of your BASIC
programs should have any trouble.

Remember, when you modify DOS, the
changes made to it are passed on to disks
INITialized after the modification. In this case,
DOS will cany the patch made to it at $B7B8,
but die RAMdisk driver itself is not inside DOS.
Moving it to unused space in DOS like at $BB00
or the INTT code are good choices.

The formatter program uses the ROM's aux
memory move routine routine at $C311
direcdy, so you don't need to have the
RAMdisk already running to format the disk.
Just BRUN it, either before or after you install
t h e R A M d i s k .

If you want to use double hi-res graphics, you
will need to have the formatter mark all of
tracks $12 and $13 as used so DOS will ignore
the memory from $2(9O0-$400O. If you want to
use more of the auxiliary RAM as a RAMdisk
you will need to add a language card handler
to the RAMdisk. This is not as easy as it looks,
as you will need to keep track of the language
card's status before, while, and after copying
RAM. This dr iver a lso does not a l low for the

larger 80 column cards like Applied
Engineering's Ramworks card.

A fast easy way to save and restore your
RAMdisk is to use Super lOB to copy tracks
$11-$1B to and from a blank disk. Tlie fast

can- MOVE
003C- AIL
003D- AlH
003E- A2L
003F- A2H
0042- A4L
0043- A4H

RD.WRT

20 11 C3
68
85 43

GET COMMAND CODE AGAIN

CARRY WILL BE SET IF 'WRITE'
COPY SECTOR TO BUFFER OR V.VERSA

RESTORE A4 TO PREVIOUS STATE

T h e R a m F o r m a t t e r

RAMDISK FORMAHER FOR 'RAMDISK' PROGRAM
BY R.A. KNOWLES

COPYRIGHT 1986 SOFTKEY PUBLISHING

COPY MAIN TO AUX RAM
MONITOR SCRATCH LOCATIONS

.EQ $C311
•EQ $3C
.EQ $3D
.EQ $3E
.EQ $3F
.EQ $42
.EQ $43

'SECTOR' IS DEFINED AS RIGHT AFTER PROGRAM,
BUT CAN BE PLACED ELSEWHERE INSTEAD

.OR $6000

.TF OBJ.RAMFORMAT

2 2 C O M P U - n S T N o . 3 8

FORMAT LDY #$00 CREATE BLANK SECTOR
IDA #$00 FOR 2ND (LAST) CAT SECTOR
STA SECTORiY WIPE OUT 256 BYTES
I NY
BNE .1
LDA #$00
S TA A 4 L P O I N T T O R A M D I S K ' S
LDA #$1E TRACK $11, SECTOR $E
STA A4H
JSR MOV IT MOVE THE 'SECTOR' TO AUXRAM
LDA #$11 1ST CATALOG SECTOR:
STA SECTOR+1 POINT TO SECOND SECTOR
LDA #$0E IN CAT CHAIN
STA SECTOR+2
LDA #$00 POINT TO TRK $11. SECT $F
STA A4L
LDA #$1F
STA A4H
JSR MOV IT COPY THE SECTOR

LDA #$0F POINT TO 1ST CAT SECTOR
STA SECTOR+2
LDA #$03 DOS VERSION
STA SECTOR+3
LDA #$FE DISK VOLUME
STA SECTOR+6
LDA #$7A 122 SECTORS PER T/S LIST
STA SECT0R+$27
LDA #$11 UST TRACK ALLOCATED
STA SECTOR+$30 (NEXT TRACK IS $12)
LDA #$01 DIRECTION OF TRACK ALLOCATION
STA SECT0R+$31
LDA #$23 PRETEND DISK HAS $23 TRACKS
STA SECT0R+$34
LDA #$10 16 SECTORS PER TRACK
STA SECTOR+$35
INC SECT0R+$37 256 BYTES PER SECTOR
LDA #$3F ALLOW USE OF TRACK $11
STA SECT0R+$7C
LDA #$FE
STA SECT0R+$7D

COPY THE SECTOR

POINT TO 1ST CAT SECTOR

DOS VERSION

DISK VOLUME

controller is preferable. Make a permanent
version of Super lOB for that purpose, and
remove the unused routines in it. If you copy
a normal floppy to RAM, the RAM will contain
a VTOC that allows writing to illegal sectors.
To avoid this, first copy the RAMdisk to a
floH)y disk, TIBEN you can write to that floppy
w i t h o u t t r o u b l e .

I have attempted to make this program as
flexible as possible so that you will have little
trouble customizing it for your own purposes.
Watch yoiu- step, but have fim!

Hexdump #1: RAMDISK
(and installer)

9D E9 A9
9D E9 00
00 9D 69
9D 69 00
39 60 91
F6 A5 3C
8D B9 B7
85 49 A0
F0 0F A5
6D A9 40

6 0 0 0 : ^ 8
6008: 9D
6010: 9D
6018: 3C
6020: A0
6028: C0
6030: B7
6038: 03
6040: 48
6048: 48

38 60 A0
A9 00 91
C9 01 D0
A0 0E A9
B1 48 C9
B0 D0 A0
D0 C8 A5
A0 04 B1
C8 11 48
3C A0 08

0F 91 48
48 A0 02
E6 A0 10
FE 91 48
11 90 D4
05 B1 48
42 48 A5
48 0A 0A
85 3D A9
81 48 85

BITMAP
. 1

LDX #$12 SHOW TRAi
T X A C O N V E R T
A S L - M U L B Y ■
ASL
T A Y P U T I T I I
LDA #$FF
STA SECT0R+$38,Y
STA SECTOR+$39,Y
I NX
CPX #$1C DONE?
B N E . 1 C O N T I N U E

LDA #$00
STA A4L
LDA #$10 TRACK $1
STA A4H
JSR MOV IT WRITE SEi
R T S D O N E ! ! ! !

SHOW TRACKS $12-$1B AS FREE
CONVERT TRACK NUM TO OFFSET
-MUL BY 4 BYTES PER TRACK

PUT IT IN Y

42 C8 B1
B1 48 F0
C9 01 F0
85 42 86
85 43 86
3C 85 3E
3F A0 0C
11 C3 68
18 60

48 85 43 A0 0C
34 C9 03 B0 9C
10 A5 3C A6 42
3C A5 3D A6 43
3D 18 A9 FF 65
A9 00 65 3D 85
B1 48 C9 02 20
85 43 68 85 42

Hexdump #2: RAMFORMAT

TRACK $11, SECTOR

WRITE SECTOR
DONE!! ! !

LDA #SECTOR SET MOVE PARAMETERS
S TA A I L A 1 = S 0 U R C E S TA R T
LDA /SECTOR
STA AlH
LDA #SECTOR+$FF A2=S0URCE END
STA A2L
LDA /SECTOR+$FF
STA A2H
S E C M A I N T O A U X
JSR MOVE CALL THE MOVE ROUTINE
R T S A N D R E T U R N T O P R O G R A M

6000: A0
6008: 00
6010: 85
6018: 94
6020: 00
6028: 7E
6030: 03
6038: 60
6040: 8D
6048: A9

6050: eS
6058: 0F
6060; 12
6068: CB
6070: D0
6078: 85
6080: 85
6088: 85
6090: 11

00 99 93
00 85 42
7E 60 A9
0E 8D 95
A9 IF 85
0F 8D 95
60 A9 FE
8D BA 60
A9 01 8D
C7 60 A9

60 EE CA
61 A9 FE
8A 0A 0A
60 99 CC
EF A9 00
43 20 7E
3C A9 60
3E A9 61
C3 60

60 A9 3F 8D
8D 10 61 A2
A8 A9 FF 99
60 E8 E0 IC
85 42 A9 10
60 60 A9 93
85 3D A9 92
85 3F 38 20

C O M P U - n S T N o . 3 8 2 3

s o f t k e y f o r . . .

B o u l d e r D a s h
1 & I I

by Randy R. Abel

E l e c t r o n i c A r t s
1820 Gateway Drive

San Mateo, CA 94404

Requirements:
Apple //e or equivalent
A b l a n k d i s k
A s e c t o r e d i t o r
Fast copier (Locksmith or equiv.)

Boulder Dash is one of the most fun games
I own. Originally marketed by Micro Fun and
now by Electronic Arts, it now includes a new
Boulder Dash I I . For those of us that do not
have the Boulder Dash by Micro Fun, I will
add the softkey to allow a deprotected copy of
both games. Boulder Dash I is on the front side
of the diskette and Boulder Dash II is on the
b a c k .

Electronic Arts' copy protection techniques
have always made the art of deprotecting a

challenge. Their method used on Boulder Dash
resembles the technique used on most of the
other games such as Sky Fox, Archon II, and
Adventure Construction Set. This method, as
it was called in COMPUTIST No. 21, is Track
Imaging. That is, track $5.5 is an exact image
of track $5, and because track imaging is very
hard to reproduce on a standard Apple
compatible disk drive we need a way around
the protection.

To start with, I needed to find out how close
t o n o r m a l t h e a d d r e s s a n d d a t a m a r k e r s w e r e
so I pulled out Locksmith's fast copier and tried
a quick check. To my surprise. Locksmith's fast
copier picked up all tracks except track $6. we
don't need to worry about this track so ignore
the error on track $6. The same process can
b e d o n e t o t h e b a c k s i d e w i t h t h e s a m e
indications. Now that we have a disk to play
with we can put away the original.

Just for fun I tried to boot the copy but, as
you can guess, it did not get very far and started
doing weird things. The next thing to check is
l o c a t i o n $ A 0 0 0 . I n a l l o f E l e c t r o n i c A r t s '

programs so far $A000 has always been the first
check. We can get by this point by making a
quick sector edit. With any sector (I used

Inspector), read track $01, sector $0C. You wOl
find a $4C at byte $00. To bypass this first
check change the value to a $60. Now any jump
subroutine to $A000 will return after doing
nothing. If you try to boot after this change it
still begins to do weird things after a bit. This
is because there is a check done just before
jumping to the routine to make sure that no
changes have been made. To get around this
check we need to make another change at track
$01 sector $7. Here we look at byte $FF and
find a $0F. Changing this to $02 will correct
the checksum and allow the boot to proceed all
the way to the point of selecting either the Apple
joystick or a Joyport. The process of finding
the right value to correct the checksum is very
lengthy and need never be done ag3in unless
the initial boot is changed.

After selecting the device used for play the
drive starts up again and does another check.
At this point I reset into the monitor. A
disassembly at $13EB will reveal;

1 3 E B - A 9 14 IDA #$14
1 3 E D - 4 8 PHA
1 3 E E - A9 0 4 IDA #$04
1 3 F 0 - 8D 0 7 14 STA $1407
1 3 F 3 - 0 9 FB ORA #$FB
1 3 F 5 - 8D 0 6 14 STA $1406
13F8- A9 00 IDA #$00
1 3 F A - EE 06 14 INC $1406
1 3 F D - D0 0 3 BNE $1402
1 3 F F - EE 07 14 INC $1407
1 4 0 2 - EE 0 5 14 INC $1405
1 4 0 5 - 4C 0 5 14 JMP $1405 (!)
1 4 0 8 - CE 0 5 14 DEC $1405
1 4 0 B - AC 0 7 14 LDY $1407
1 4 0 E - 0 0 0 7 CPY #$07
1 4 1 0 - D0 E8 BNE $13FA
1 4 1 2 - AC 0 6 14 LDY #$1406
1 4 1 5 - C0 OF CPY #$DF
1 4 1 7 - D0 E l BNE #$13FA
1 4 1 9 - 4 9 4E EOR #$4E
141B- 09 28 ORA #$2B
1 4 1 D - 4 8 PHA
141E- A9 04 IDA #$04
1420- 48 PHA
1 4 2 1 - A5 4 F IDA #$4F
1 4 2 3 - 45 4F EOR #$4F
1 4 2 5 - 18 CLC
1 4 2 6 - E9 00 SBC #$00
1 4 2 8 - 48 PHA
1 4 2 9 - B0 01 BCS $1420
1 4 2 B - 6 0 RTS

An update to the softkey for..

Hard Hat Mack

For those who want to know what is
happening here, read on. If you want to figure
it out for yourselves, skip this paragraph. The
routine pushes $14 on the stack to make the high
byte of the return address somewhere in the
$1400 range. From $13EE to $1418 they are
EORing the range from $0500 to $07DF, then
at $1419 we see EOR #$4E. If you Exclusive-
OR a value with itself, the end result will be
zero. $4E is the value we find for the $0500
to $07DF range. The next thing that happened
is an ORA #$2B. S ince the accumula tor had
a zero we woimd up with the $2B. this will be
the low order address (minus one) the routine
will return to. The next part pushes $04 and the
$FF on the stack. Can you figure out how this
is done? The branch on carry set fails and is
executed. Where will the routine return to?
Right, $0500. This is where the next check is
done for the track image. This check ends with
a RTS, so where is it going to return to? Right
again, $142C!

There is no useful data returned to the
program in this routine, so why can't we just
jump over all that mess and get on with the
game? We can by placing at $13EB a JuMP to
$1420 ($40 20 14). To do this we need another
sector edit. To spê things up I search the disk
with the Inspector (or the CORE Disk Searcher)
for the sequence $A9 14 48. To my surprise
it was not encrypted and Inspector found the
pattern. The only thing left to do is make the
change and try again. To save you time, there
are two places on the disk where this routine
is found, so search the whole disk before you
try booting the disk again.

Now you you have Boulder Dash I liberated
from the copy protection. Boulder Dash n is
just as easy. M ê the first sector edit just like
Boulder Dash I, (change track 0 sector 1 byte
$FF to a $02, and track 1 sector $C byte $00
to a $60). Next search the disk for $A9 15 48.
You will find two places that need to be
changed. This time we will put at $1561 a jump
to $15A2. Check at $1561 and you will find
almost the same rout ine.

I made the following changes on my disks:

T r a c k S e c t o r Byte From To

$1 $7 $FF $0F $02
$1 $F $00 $4C $60
$D $4 $EB $A9 $4C
$D $4 $EC $14 $2C
$D $4 $ED OO $14
$E $C $EB $A9 $4C
$E $C $EC $14 $2C
$E $C $E0 $48 $14

$1 $7 $FF $0F $02
$1 $F $00 $4C $60
$D $2 $61 $A9 $4C
$D $2 $62 $15 $A2
$D $2 $63 $48 $15
$E $A $61 $A9 $4C
$E $A $62 $15 $A2
$E $A $63 $48 $15

^ S

by Brian Troha

Requirements:
Hard Hat Mack softkey
(Issue No. 5 or Book of Softkeys I)

After softkeying Hard Hat Mack (see "Boot
Code Tracing Hard Hat Mack," COMPUTIST
No. 5), I started looking into the program code.
There are a total of six calls to the protection
routine. The first is taken when the game is
started, while the other five are taken during
the run of the demo. After each JSR $43D4 you
will find a STA $xxxx. This is done to scramble
the game if you put a RTS at $43D4. Otherwise
the program pulls the return address from the
stack and adds three to it (thus "jumping" over
the STA command), pushes it back on, then
pushes two more values onto the stack so it
returns to $500. One possible way to fix this
is to pull the last value off the stack, add three
to it and retum. The following code will do this:

4 0 3 4 : 6 8 P L A p u l l i t o f f
4 0 3 5 : 1 8 C L C r e a d y f o r a d d
4 0 3 6 : 6 9 0 3 A O C # $ 0 3 a d d t h r e e t o I t
4 0 3 8 : 4 8 P H A p u t i t b a c k
4 0 3 9 : 6 0 R T S d o n e , r e t u r n

The other thing we could do is eliminate the
jumps to the code altogether. After the first call
and STA instruction there is valid program
code, while after all the others there is an RTS.
To eliminate the jumps we would do the
following:

8 6 4 : £ A E A E A E A E A E A
111 4 : 6 0
1 2 1 2 : 6 0
1 2 D 8 : 6 0
5 F 3 2 : 6 0
7 0 A 8 : 6 0

Now there are no jumps to the protection so
we can overwrite all the memory firom $3000
to $3FFF (sixteen free pages). After a little
work you would find the memory from $2A00
to $2FFF, $2000 to $21FF, and $2310 to $23FF
are all free. If you put your move routine at
$2310 you can save twenty-four pages of
memory. Follow the procedure in the original
article up to step 13, then:

14) Do a few memory moves: restore page $08
to its original location, then pack high memory

into the free area ment ioned above.

8 0 0 < 3 4 0 0 . 3 4 F F M
2 A 0 0 < 7 F 0 0 . 9 4 F F M
2 0 0 0 < 7 D 0 0 . 7 E F F M

15) Type in a memory move routine to move
it a l l back.

2310 :A0 00 B9 00 2A 99 00 7F
2 3 1 8 : C 8 D 0 F 7 E E 1 4 2 3 E E 1 7
2 3 2 0 : 2 3 E A 1 7 2 3 E 0 9 5 D 0 E 8
2328:A0 00 B9 00 20 99 00 7D
2330:B9 00 21 99 00 7E C8 D0
2 3 3 8 : F 1 6 0

16) Fix the start of the game and set up for some
A P T s .

800:20 23 10 20 04 22 4C 2D
808:08 00 00 00

17) Change the routine that sets up the reset
vector to point to the monitor.

2 2 1 3 : 6 9
2 2 1 8 : F F

18) Save the file to disk.
B S A V E H A R D H A T

MACK,A$800,L$7600
Now to do any of the following APTs just

hit Reset and you will be in the monitor. You
can use one or all of the APTs to practice the
game or to help master one single level. After
doing an APT restart the program with 82DG
then play the game. For the entire game:
1. Number of men to start (do not exceed $80)

A 7 2 : x x

2 . I m m u n e t o O S H A a n d Va n d a l s

5 C 4 0 : 6 0

3 . N o B o n u s c o u n t d o w n

5 8 1 D : 6 0

For first level:
1 . Can ' t fa l l down ho les

9 5 C : E A E A E A

2. No r i ve ts f rom mach ine

1 6 6 0 : 6 0

For second and th i rd levels :
Immune to crunchers (not including "vice
jaws" on second level)

5 A 2 A : 6 0

i
C O M P U T I S T N o . 3 8 2 5

s o f t k e y f o r . . .

T h e O t h e r

by Dick Meikle

Tom Snyder Productions, Inc.
1 2 3 M r . A u b u r n S t .

Cambridge, MA 01238

Requirements:
48K Apple][Plus and up
Super lOB 1.5 or sector editor
One b l ank d i sk
Disk search utility (optional)

You are the national leader of one of the two

great powers in the world. You must manage
your economy for maximum prosperity,
compete with the other world power for scarce
resources, maintain the security of your nation,
and build a bridge to world peace. You soon
discover that these goals, difficult to achieve
individually, are nearly unattainable when taken
together.

This is the scenario for The Other Side, a
global conflict resolutions simulation created by
Tom Snyder Productions. Designed primarily
for use in a classroom environment, this
program presents its participants with the
challenge of managing events in a simulated
"world" where negotiation and overcoming
conflict are the only sure way to "win" the
game. The "world leaders" may approach the
game from either a competitive or collaborative
strategy. The simulation may run on a single
computer or, ideally, on two computers in
separate locations so that the players cannot be
certain what the "other side" is planning. All
communications between nations take place
o v e r a " H o t - l i n e " l i n k , v i a m o d e m o r
inexpensive cable (available from Tom Snyder
Productions). Currently one of the hottest pieces
of educational software, The Other Side was
once featured on NBC's Today program which
reported a simulation carried out by high school
classes in America and Europe linked by
m o d e m .

T h e P r o t e c t i o n

When a disk is used around children, even
15 to 18 years old, it is not a very good idea
to use an original disk. Although The Other Side
comes with a backup. Murphy's Law being
what it is, I prefer using an easily backed up
and unprotected copy.

The first copy program I try when making
a backup is COPYA. Sometimes, even in this
copy protected world, this works. Not this time.
Using COPYA on this program gives a "cannot
read error''. With the first step out of the way
I turned to EDD HI. I noticed when copying
track $11 that the track was mostly $FFs, This
is a good indication of a nibble count. I tried
the manual nibble count on track $11 but this
did not yield a very reliable copy. It would not
boot every time. Armed with my .Apple //e and
Wildcard I decided to bypass the nibble count.

The Wildcard gives me the ability to stop the
booting process during the nibble count. I
booted the original after write-protecting it (I
take no chances). If there is one thing you will
read time and again in COMPUTIST it is to
listen to your drive when it is booting. I stopped
the boot wi th the Wi ldcard when I heard the
drive head move to track $11. This tells where
in memory the nibble count is taking place.

Looking at the code in memory, it appeared
that the nibble count routine started at $2400.
The first three bytes were $4E 03 24. I got out
my disk search utility and searched for these
three bytes. I found them on track $10 sector
$0 starting at byte $00, but the rest of the sector
seemed to be garbage. I rebooted the original
to take another look at the code. It was then that
I n o t i c e d t h a t t h e c o d e a t $ 2 4 0 0 w a s s e l f

modifying. The apparent garbage alters itself
to make executable code. Starting at $2400 each
instruction alters the next until it reaches $2412.
At $2419 each byte from $24IF through $24FF
are (ROR) ROtated one bit Right and at $24IF
the same thing happens to memory locations
$2500 through $25FF.

(after decoding)
2400- LSR $2403 decode next step
2 4 0 3 - ROR $2406

f t I I H

2406- ROR $2409 I I I I I I

2 4 0 9 - ROR $2419 e l s e w h e r e
240C- ROR $240F n e x t s t e p
2 4 0 F - ROR $2415 e lsewhere
2 4 1 2 - TXA s a v e c u r r e n t X
2 4 1 3 - LDX #$1F
2 4 1 5 - ROR $2410 decode a step
2 4 1 8 - CLC set carry bit to 0
2 4 1 9 - ROR $2400,X d e c o d e
2 4 1 C - INX many
2 4 1 0 - BNE $2419 bytes
2 4 1 F - ROR $2500,X d e c o d e
2422- INX m o r e

2 4 2 3 - BNE $241F bytes
2 4 2 5 - TA X r e s t o r e X
2 4 2 6 - LDA $02 push locations 0-2
2 4 2 8 - PHA o n s t a c k
2 4 2 9 - LDA $01
2 4 2 B - PHA
2 4 2 C - LDA $00
2 4 2 E - PHA
2 4 2 F - S IX $02 s a v e X
2 4 3 1 - JSR $253B set up zero page
2 4 3 4 - LDY #$20 « < i n s e r t J u M P « <
2 4 3 6 - LDA #$22
2438- JSR $2404 s t a r t n - c o u n t
2 4 3 B - LDA $0080,X read byte
2 4 3 E - BPL $243B
2 4 4 0 - PHA w a s t e
2 4 4 1 - PLA t ime
2 4 4 2 - CMP #$D5 is i t a $05?
2 4 4 4 - BNE $2438 start again i f not

The Softkey

The actual nibble count starts at $243B. If
the count is not correct the program will branch
to $24B6 and crash. If no error occurs the boot
continues at $24A0. All that is needed to do is
put a IMP $24A0 at $2434 so the boot will
continue. This does not seem too difficult. Just
change the bytes starting at $2433 to 4C A0 24

2 6 C O M P U T I S T N o . 3 8

S i d e

(JMP $24A0). But, remember, the code from
track $10 sector $00 is altered at $2419. The

bytes will be RORed. So bytes $33-$36 on track
$10 sector $0 must be changed from $4B 40
41 52 to $4A 99 40 48. Note that I changed
four bytes rather than three. This is because
$4A (01001010 in binary) and $4B (01001011)
both rotated right will give us a $25 at $2433.
However, when $4B is rotated it causes the
rightmost bit to be moved into the "carry" of
the status register. Then when the byte $99 is
rotated, the bit placed in the carry from the last
rotation will be moved into the byte. That would
give a $CC (11001100 bin.) A0 24 (CPY
$24A0) instead of $4C (01001100 bin.) A0 24
(JMP $24A0) at $2434. This is the sector edit
made by the controller at the end of this article.
The controller formats the copy and copies
tracks $0-$10, makes the sector edit on track
$10, then copies tracks $12-$22. The JuMP
cannot be placed earlier because the stack and
zero page must be set before the jump can be
e x e c u t e d .

The sector edits made by the controller are:
T r a c k S e c t o r B y t e F r o m To

$ 1 0 15 0 $ 3 3 $4B $4A
$34 $40 $99
$35 $41 $40
$36 $52 $48

Step by Step
1) Type in the controller below.

2) Install the controller into Super lOB 1.5.
3) RUN Super JOB and answer Yes to the
Formatting option.

That's all there is to it. You have just de-
protected The Other Side.

On each disk the sector arrangement may be
different. If this does not work on your copy
you will need a disk search utility. Make a copy
with any copier that ignores disk errors (such
as Locksmith Fast Copy, Disk Muncher, etc...)
and search for the hex bytes $4B 40 41 52.
Change them to $4A 99 40 48. Write the sector
back to the copy. If you want to make the disk

completely COPYAable, use a nibble copier to
copy track $11 of a DOS 3.3 disk to this disk
(but don't use it to store anything).

c o n t r o l l e r

1000 REM OTHER SIDE CONTROLLER
1010TK = 0 :LT=17 :ST=15 :LS=15 :CD = WR:FAST

= 1

1020 GOSUB 490 : GOSUB 610
1025 T1 = TK : TK = PEEK (TRK) - 1 : RESTORE : GOSUB

310 :TK = T1
1030 GOSUB 490 : GOSUB 610 : IF PEEK (TRK) = LT

THEN 1050
1040TK = PEEK (TRK) :ST = PEEK (SOT) : GOTO 1020
1050 IF PEEK (TRK) = 17 THEN TK = 18 : LT = 35 : GOTO

1 0 2 0

1060 HOME : PRINT "COPY'DONE" : END
1100 DATA 4' CHANGES
1110 DATA 16 ,0 ,51 ,74
1120 DATA 16 ,0 ,52 ,153
1130 DATA 16 ,0 ,53 ,64
1140 DATA 16 ,0 ,54 ,72

c o n t r o l l e r c h e c k s u m s

1 0 0 0 - $ 3 5 6 B 1 0 6 0 - $ 4 D 6 1

1 0 1 0 - $3873 11 0 0 - $ 0 1 8 4

1 0 2 0 - $ 7 B F A 111 0 - $3BC7
1 0 2 5 - $7025 11 2 0 - $0830

1030 - $0308 1130 - $5A45

1 0 4 0 - $89FF 11 4 0 - $4EBB

1 0 5 0 - $26F8

t

Prepare for a close-up of area

C O M P U T I S T N o . 3 8 2 7

Big Bother's DOS...

Lookituf Into
by Stephen L. Favor

Editor's note: We were going to print this
article in an earlier issue, but when we recieved
a real live softkey for Flight Simulator II
(COMPUTIST No. 36), we put this one (which
isn't a full softkey) on the back burner. We feel
it can provide some useful information anyway,
so here it is.

In the Gray House, the leader of serious
Apple users takes the stand. "Ladies and
gentlemen, friends and foes, I am pleased to
announce I have just enacted legislation that
outlaws Flight Simulator U. We begin hacking
immediately!"

T h e I r o n C u r t a i n

I must compliment the writers of Flight
Simulator's (FS-IT) DOS. It is not a modified
version of 3.3 but totally new and foreign. It
forms a very nice (for SubLogic) or disgusting
(to me) wall between FS-II and its users. Here
is a short tutorial of what this monster does and
how it does it.

FS-n doesn't store data as sectors but as a

single track. Each time routines are called in
this Read/Write Track (RWT) program, it seeks
the proper track, looks for a header in the
format $92 94 XX (XX being unique for each
track), and reads $1A00 bytes of 6&2 encoded
data to a buffer ($2600) in hi-res page one.
Then, $1000 bytes are decoded and stored from
$2600 to $35FF. What happens from that point
depends on the routine that was called.

For the curious mind, here's how data is
stored on the disk itself. The first $1500 bytes
are written in a $15 by $100 matrix. See the
example below and disassemble the code at
$23D9 once you have RWT for a better
understanding. Then, $500 bytes of sequential
data follow, and that's it. How simple can it be?

Example 1: $15 by $100 information matrix.
AU values are given in hex. The top row is the
high byte and the first colunrn is the low byte
o f a l o c a t i o n w i t h i n t h e R W T b u f f e r w h e r e
information is stored. These two nuinbers index
the sequential location on the disk of the byte
that will be stored in thier address, e.g. The
location $3902 will recieve byte number $3E

from the disk. Or byte $14C2 firom the disk will
be stored at $27FD.

$ 2 6 x x 2 7 x x 2 8 x x 3 8 x x 3 9 x x 3 A x x

00 0000 0001 0002 0012 0013 0014
01 0015 0016 0017 0027 0028 0029
02 002A 002B 002C 003C 003E 003F

FD 14C1 14C2 14C3 14D3 14D4 14D5
FE 14D6 14D7 14D8 14E8 14E9 14EA
FF 14EB 14EC 14ED 14FD 14FE 14FF

There are seven subroutines that can be called
to send data to and from the disk. They all are
entered by a jump table (series of JuMPs)
begiiming at $1EAD. Here's a list of them and
what they do.

$ 1 E A D - J M P $ 2 0 3 A : " R D O "
This routine reads a Quarter of the $1000
decoded bytes from the buffer to the address
stored at $1E03,4. The quarter number ($1E01)
is from $00 to $87. The first quarter of track
one being $00 and $87 the last of track $22.
More on deciphering this numb% later.

$ 1 E B 0 - J M P $ 2 0 1 5 : " W R Q "
Exactly the same as RDQ except it writes the
quarter number at $1E01 to the disk from the
address at $IE03,4.

$ 1 E B 3 - J M P $ 2 0 A F : " R D T "
This jump is used only once, and the write
routine that goes with it is never called. It goes
beyond the decoded data in the buffer and
deciphers a $150 byte "tail" of its own. There
is one tail on each of tracks $01-22 totaling
$2CA0 bytes, all of which are loaded into the
language card, if there is one, during the boot.
The number of a tail is its track number minus
o n e .

$ 1 E B 6 - J M P $ 2 1 2 2 ; " W R T "
Never called. Forget it.

$ 1 E B 9 - J M P $ 2 3 8 A ; C R A S H
It's code like this that upsets me somewhat. If
I'm correct, this one will simply replace the data
on every other track with $FDs starting with
track $02.

$ 1 E B C - J M P $ 2 0 0 0 ; d r i v e o f f
$ 1 E C 4 - : " L D R W T "

Home disk arm and load RWT to $2000.

All that is left now is the lOB table begiiming
at $1E00. Below is a list of what each byte
represents .

$1E00: Dr ive no.
$1E01: Quarter; $00-87, $00 being the

first quarter of track $01 and
$87 the last of track $22. Also,
Ta i l no . f rom $00 to $21 . Add
o n e t o o b t a i n t r a c k n o .

$1E02: ?
$1E03: Low byte of destination address
$1E04: High byte of destination address
$1E05: ?
$1E06; ?
$1E07: 0=48K, 1=64K
$1E08: Slot no.
$1E09-1E0C: Used by the track seeking

r o u t i n e .
$1E0D: Third mark of header. Each track

h a s a d i f f e r e n t h e a d e r . A l l c a l l s
set this byte to the correct value
according to the contents of $1E01.

$1E0E: 0=no error. The program will lock
up at 1000 feet if this doesn't
equal zero.

$1E0F: ?

Beyond The Iron Curtain
Let's put this information to use now, and

put FS-n on a normal (3.3 format) disk.
1) Boot FS-n.

2) The third time you hear the disk arm
recalibrate (the grinding noise), press Reset.
You don't need a modified ROM or anything.
3) B o o t a s l a v e d i s k (d o n ' t u s e
Control/Gpen-Apple/Reseti).
4) BSAVE FS-n.RWT, A$2000, L$600.
5) Type in the Super lOB controller (you can
ignore what comes after the REMs) and run it
to move FS-n to a b lank d isk.

Now you have everything you need to give
you a splitting head-ache!

A b o u t T h a t W e i r d B o o t

The Boot ROM loads a $100 byte program
and jumps to $801 as usual. Then, a three page
block is read to $1D00 and execution transfers

2 8 C O M P U T I S T N o . 3 8

FUgfU Sinudator II
there. It is here that the unique sound of this
boot appears. The disk arm homes for the
second time and loads RWT to $2000, and
quarters $22 through $24 (track $09, sector $08
to track $0A, sector $03 on the deprotected
disk) are stored to $A7E0.

After a pair of jumps, execution ends up at
the last stage of the boot, $AA4D. The main
routines this final stage uses are:

$1EC4:

$AAA5:

$ABB5;
$AC9B:

$A71C:

$AD2B:
$ACD0:

Home disk arm (for the third time)
and reload RWT to $2000.

Read quarters $00-06 to $0200,
and quarters $07-19 to $6000.

Read quarters $1A-21 to $2000.
If 64K, load tails $00-21
to $0000. $8B2=01.

Loaded by $AAA5. Turn off disk
drive and copy hi-res page two
over hi-res page one.

Replace zero page.
If $8B2 isn't zero, modify

f o r 6 4 K v e r s i o n .

You will also notice an abundance of the
command "BCS $AA70." If any of these
branches occurs, the ominous error trap (JSR
$1F89) that blanks the screen and displays
several numbers at the top left of the CRT will
be invoked. The rest of the routines display the
opening messages and don't seem to do any
error checking.

Finding A Quarter
Below is a short assembly routine that will

set up the track and sector for a given quarter.
Call it and read the next four sectors, and you'll
have the quarter. The formulas used are: track
= int (quarter + 4) / 4 and sector = (quarter
*4 + 3) AND $eF
(Note: the program performs the "AND"
tefore adding three in case the carry flag was
set when the first shift was performed.)
IDA QUARTER
CLC
ADC #$04
LSR
LSR
STA TRACK
LDA QUARTER
ASL

:(LDA $1E01)
;Adjust so quarter $00
; will be Trk $01, Set $1
;Divide
: by four
: to get track no.
:(LDA $1E01 again)
;Multiply
: by four

0 ; and use bits 2 and 3

A D C # $ 0 3 ; P l u s $ 0 3
STA SECTOR ; for sector number

F i n a l C o n u n e n t s

So, if I know so much, why don't I finish
the deprotection scheme? Well, I may, but I
don't have the assurance that I will have the time
or the patience. I still want to see this one fall,
and I'm not greedy for fame. So all of you out
there who have some extra time (a lot of it!)...
Here are some tips that might help you do it.

Probably the most difficult problem will be
finding a place for DOS. There are only three
blocks of memory unused that I can find.
$1E00-1FFF is free except for the DOS jumps
from $1EAD to $1EC6. Pointing these jumps
to code that imitates RWT would work nicely
because all calls are made via these addresses.
Remember, $1E0E must equal zero at all times.

The second pocket is where RWT resides in
the language card (64K version). It starts at
$D3D0 ($D000 to $D3CF may be free also)
with a series of jumps presumably (you better
check before you mess with them) unimportant
once RWT is unhooked. Last, bank one of the
language card can be used if you modify or
delete the course plotter. It's the only place I
found any reference to bank one, but I don't
know to what extent i t is used.

Above all, remember that the more memory
you change, the greater the chance you have
of being found out. Be sneaky and try to put
your new code in places Big Bother would never
think of looking.

c o n t r o l l e r

60 HI MEM: 7167 : GOTO 10010 : REM HIMEM JUST
BELOW RWT. BUFFER WILL START AT
$4000 LEAVING ROOM FOR FIVE TRACKS.

1000 A$ = " INSERT' DISK' W/FS-11. RWT" : GOSUB
470 : PRINT CHR$ (13) CHR$ (4) "BLOAD^
FS-II.RWT" :REM LOAD RWT. IT WILL USE

ALL OF HI-RES PAGE ONE.
1010 A$ = " INSERT' FS- II": GOSUB 470
1020 POKE 7424,174: REM 1D00- "LDX" ($1E08

). LOAD X-REG WITH SLOT NUMBER
INSTEAD OF STORING SLOT NUMBER.

1030POKE7438 ,0 : POKE7443 ,64 ; REM 1D0D- (LDA
) "#$00" AND 1D12- (LDA) "#$40" . THE
COMMAND IMMEDIATELY FOLLOWING EACH OF
THESE COMMANDS STORES THE NUMBERS AS THE
TARGET BUFFER AT IE ,4.

1040 DATA'96 ,162 ,0 ,181 ,0 ,157 ,0 ,28 ,202
,208 ,248 ,32 ,0 ,29 ,162 ,0 ,189 ,0 ,28 ,149
,0 ,202 ,208 ,248 ,96

1050FOR I =7469T07493 : READX: POKE I ,X : NEXT
:REM SHORT PROGRAM BEGINNING AT 1D2E
TO SAVE AND RESTORE THE ZERO PAGE,
RESPECTIVELY, SO CALLING 1D00 WON'T
CLOBBER DOS. CALL THIS PROGRAM FOR
ALL READS FROM THE FS-II DIS

1060T = 1
1070 POKE 7448 ,T * 4 - 4 : POKE 7466 , (T + 5

)*4-4: IFT + 5>34 THEN POKE 7466
,34 * 4 - 4 : REM 7448 = STARTING
QUARTER, 7466 = ENDING QUARTER. SET
TO READ 20 QUARTERS , OR FIVE
TRACKS.

1080 CALL 7470 : REM 1D2E
1090 VL = 0 : CD = RD : GOSUB 490 : POKE BUF , 64 :

REM WRITE IT TO NORMAL DOS
1100FORTK = TTOT + 4 : IFT + 4>34THENF0RTK

= TT0 34
1110FORST=0TO15 : GOSUB 100 : GOSUB430 : NEXT

: NEXT
1120 T = T + 5 : IF T < 35 THEN 1070 : REM CHECK

FOR LAST TRACK
2000 POKE 7481 , 175 : POKE 7482 ,32 : REM 1D38-

(JSR) "$20AF". MODIFY TO GET TAILS.
2010 POKE 49385 ,0 : POKE49386 ,0 : REM DRIVE

1 O N . B S A V E I N L I N E 2 0 5 0 W I L L
TURN IT OFF.

2020POKE 7681 ,0 : POKE 7683 ,0 : POKE 7684 ,64
: REM START WITH TAIL #0. BUFFER AT
$4000.

2030 FORT = 1 TO 34 ; CALL 7470 : NEXT : REM READ
34 TAILS (ALL OF THEM).

2040 A$ = "INSERT' SLAVE' DISK" : GOSUB470
2050 PRINT CHR$ (13) CHR$ (4) "BSAVE'

F S - I I . D 0 0 0 , A $ 4 0 0 0 , L $ 2 C A 0 " R E M
SAVE THE TAILS.

2060 END

c o n t r o l l e r c h e c k s u m s

- $7FB5
- $9AE2
- $C06F
- $18BA
- $9DEE
- $FBC7
- $62D5
- $3242
- $D313
- $D60E
- $E81A

- $75A9
- $5F0B
- $2A92
- $05A1
- $C97D
- $CB93
- $EEB5
- $47E0
- $4355
- $BDB3

C O M P U T I S T N o . 3 8 2 9

B o a c ^
E S S E N T I A L D A T A D U P L I C A T O R
Back up your copy-protected disks with
Essential Data Duplicator 4 PLUS. ■
EDD 4 PLUS is new technoiogy, not just
"another" copy program. The EDD 4
PLUS program uses a speciaiiŷ fl̂
designed hardware card which
works with your disk drives to
back up disks by accurateiy
copying the bits of data from
each track. Don't be fooied...
no other copy-program/system
for Appies can do this! ■ In addi-̂ ^H
tion to backing up disks, EDD 4 PLUS
inciudes several useful utiiities such as
examining disk drives, certifying disks, dis-
piaying drive speed rpm's, plus more! |■ EDD 4 PLUS runs on Apple II, II Pius |
(including most compatibles), and lie, |

and is priced at $129.95 (duodisk/uni- j
disk 5.25 owners must add $15 for a j

special cable adapter). Add $5.00 |
($8.00foreign) ship/handling ̂

when ordering direct. HA standard EDD 4
version which doesn't include any hard
ware is available, and can be used on Apple

lie and III (using emulations mode) and

^̂l̂s priced at $79.95. Add $3.00 ($6.00
foreign) ship/handling when
ordering direct. ■ If you own
an earlier version, send us
your EDD disk and deduct $50
HHfrom your order. ■ Ask

for EDD 4 PLUS at your local
computer store, or order direct.

Mastercard and Visa accepted. All
orders must be prepaid. ■ in addition,

!registered owners may purchase EDD's
printed 6502 SOURCE CODE listing for
educational purposes.

U T I L I C O M I C R O W A R E
3377 SOLANO AVE. , SUITE 352
NAPA, OA 94558/(707) 257-2420

o
■ ■m n r

B A C K U P Y O U R S O F T W A R E W I T H
L O C K S M I T H 6 . 0 ™ .

Locksmith, the controversial copy program that
took the Apple world by storm in 1981, has evolved
from a powerful b i t -copy programmed into a
complete disk uti l i ty system, al lowing the Apple user
to recover crashed disks, restore accidental ly
deleted files, and perform hardware diagnost ics on
the disk drive and memory boards. The NEW
L o c k s m i t h v e r s i o n 6 . 0 i s n o w a v a i l a b l e a n d i n c l u d e s
an advanced disk recovery ut i l i ty, a framing-bit
analyzer, an automatic boot tracer, a sector editor,
many file util it ies, and of course, the most powerful
bit-copy program available. A fast disk backup utility
copies disks in eight seconds flat. Improvements to
Locksmith Programming Language have made it
more powerful and easier to use for you to write
your own backup and repair procedures. Includes a
library disk which contains automatic procedures to
copy hundreds of Apple programs.

Locksmith requires no additional hardware, but
will use any additional RAM memory that it finds,
including RAM boards from Applied Engineering
a n d C h e c k m a t e Te c h n o l o g y,
Don't get caught with your hands tied. Order
Locksmith 6.0 today.

N E W L O W P R I C E $ 7 9 , 9 5

Registered Locksmith 5.0 owners may upgrade to version 6.0 for $29.95.
Available from your computer dealer or directly from:

Alpha Logk Business Systems, Inc.
4119 Nor th Union Road
Wo o d s t o c k . I L 6 0 0 9 8

(8 1 5) 5 6 8 - 5 1 6 6 «
Alpha Logic Btisinoss Systems Inc 1985

Looksmtih and Locksmith PC are registered trademarks ol Alpha Logic Business Systems Inc

40<j= per disk? I
And that INCLUDES the Tyvek sleeve, too? I

A P P L E ®

PROGRAMMERS
P U B L I S H W I T H

URJTME
T H E D I S K M O N T H L Y

Gain national prominence with America's
leading monthly disk publication. (We
were the first to publish Bill Travers!) If
you are either an Apple II or Macintosh
programmer... you won't find a better
way to publish your work than through
UpTime, The Disk Monthly. We seek sub
missions for both the Apple II series and
the Macintosh computers.
Call: Bill Kelly at 1-800-437-0033 today.
Or, write to Bill at UpTime, 174 Bellevue
Avenue, Newport, Rhode Island 02840.

So il/futt Sejfiumr ffmenU. . . , . . .
MORE BkHG FOR THE BUCK

I B U V : G E T
I THE THI®ON£

■ ^33^
■ W I T H A C O P V
J OF THIS AD

packcuju (fom
amfxitm, ulj documnUfui

and unp'iiA&idf
f o r d o s O D i s c C o m m a n d e r _

for graphics □ Iconix.
for programming □ Power & Utilities .

f o r f r e e O F R E E c a t a l o g _

.$29 .95

.$29 ,95

.$29.95 NEW-

.$00 .00

f r e e
S H I P S H A N D L E

f r e e f r e e
F O R E I G N - A D D C A

S O W H AT S O F T WA R E . 1 0 2 2 1 S L AT E R AV E . , S U I T E 1 0 3 ,
F O U N TA I N VA L L E Y, C A 9 2 7 0 8

it a#tg»siw«! tnw«rjtffc ot Aooie Comccw Inc

Neu> Version, improved and Easier to use!

S e n i o r
t o t h e S e n i o r P R O m i ^

v e r s i o n 3 . 0

EKamlne, modi fy, and backup your
Hpple //e and //c softivare!

The Senior PROfl is a hardware device with deprotection
utilities instantly available trom any program. Including:
■ Enter the Monitor to examine or change memory.
■Display where in memory the program was running.■ Disassemble, kiew or sake any memory, eken $00-7FF.
■Display the Stack tor return subroutine addresses.
■Instantly switch between two different 6Hk programs.
After interrupting a program and examining or altering
memory, the program may be instantly restarted. Or it
may be saved to disk in normal B-files &< later restarted.
The Senior PROM also has a sophisticated Sector Editor
and Memory/Disk Detect ike. and its own DOS with disk
copy, format, edit, and protected disk utilities, all without
booting a disk first! Assembly Language utilities include
Step and Trace, an Assembler, and more. Undetectable
by software or hardware, does not use a peripheral slot.Extensike documentation and guide to copy protection.
Economically priced at $79.95 for prepaid orders withcheck or money order. Credit card orders akailable for
$88.95 Specify //c. or //e standard or enhanced ROMs.

F o r o rders ca l l 317-743-4041, 10-5 E.S.T.
o r 3 1 3 - 3 A 9 - 2 9 5 4 M o d e m 2 4 h r s . N » t F o r i l l « ^ d l u i « .

^ u t ; t i n g ^ d g e E n t e r p r i s e s
43234 Ren Cen Sta t ion^ Det ro i t , HI 48243

Back Issues & Library Disks order form

Issue Mag Disk Both
$4.75 $9.95 $12.95

3 8 □ □ □
3 7 □ □ □
3 6 . . □ □ □
3 5 „ . □ □ □
3 4 . . □ □ □
3 3 . . □ □ □
3 2 □ □ □
3 1 . . □ □ • □
3 0 , . □ □ n
2 9 □ □ □
2 8 . . □ □ □
2 7 . . □ □ □
2 6 , □ □ □
2 5 . . □ □ □
2 4 . . □ □ □
2 3 . . N A □ N A
2 2 . . □ □ □
2 1 . . N A □ N A

2 0 . □ □ □
1 9 . . □ n □
1 8 n N A

☆ 1 7 □ □ □
1 6 . . □ □ □
★ Book of Softkeys Vol 3 . . ■ ■

1 5 . . N A □ N A
1 4 . . N A □ N A
1 3 . . N A □ N A
1 2 . . N A □ N A
1 1 . . N A n N A

★ Book of Softkeys Vol 2 $19.95 I
I D N A □
9 N A □
8 N A
☆ 7 □

6 N A □

□
NA
NA
NA
□
NA

★ Book of Softkeys Vol 1 $14.95 C
4 N A
3 N A
C o r e 2 □
2 N A
1 □
C o r e 1 □
C o r e 3 □
C o m p u t i n g 3 . . . O

□
N A

NA
NA
□
NA
□
□
□
N A

Best of Hardcore Computing. NA [□ NA
★ Core Special $10.00. . . 1 I
(All three CORE magazines)

Special "Both" disk & magazine combination orders apply
to one issue and its corresponding disk. Prices shown are
for U.S.. Canada, and Mexico only.
Some disks apply to more than one issue and are shown
as ta l le r boxes .
★r Book Of Softkeys volumes do not come with disks,
■yr Vt/e have a limited supply of these issues.

BACK ISSUES and
L I B R A RY D I S K S o f
COMPUTIST are still available. Library disks are

available for ALL issues, even for issues that are no longer
available (marked NA^.

L I B R A R Y D I S K S
a r e p e r f e c t c o m p a n i o n s

f o r C O M P U T I S T
Documentation for each Library Disk is in

the corresponding issue.

Send me the back issues and/or library disks indicated:

Name . . I D # .

Address

C i t y _ State Zip

Country . P h o n e .

.Exp..

Signature. .CP38

H O L I D A Y S A V I N G S . '

□ Yes, I want to take advantage of thie special back Issue prices indicated on the Holiday savings
page. I understand that the sale price is $10 for 3 Issues. (Foreign orders $20/3 issues)
□ I want to take advantage of the special library disk prices. I understand the holiday price is
5 disks for $30. (Foreign orders add $5 shipping & handling). I understand that I will receive a free
color coded case with each set of 5 library disks ordered.
□ I want to take advantage of the library disk and magazine combination prices. I understand
the holiday price is $9.95 per set, $3 off the regular price. (Foreign shipping add $3).
□ My order is over $100.00. I would like to take advantage of your special offer and receive a

□ free Core Special or a
□ f r e e C O M P U T I S T T - s h i r t . M E N S S I Z E ; X L L M S

(T-shirts will be supplied while quantities last, in the event your size is not available, a Core
Special will be supplied.)

Send check ormoney order to: COMPUTIST PC Box 110846-T Tacoma, WA 98411. Most orders shipped
UPS so please use street address. Offer good while supply lasts. In Washington state: add 7.8% sales tax.

Back Issue Rates For Foreign Orders
Canada and Mexico back-issue and library disk rates are identical to U.S. First Class unless otherwise specified.

Other Foreign: Price for each magazine includes shipping,

1 - 2 c o p i e s 3 t c 4 c o p i e s 5 o r m o r e c o p i e s

$14.25 each $13.25 each 1 2 . 2 5 e a c h

Other Foreign disk rates are $11.94 each (includes shipping). Special "Both" disk and magazine
combinat ions shown do NOT apply to Fore ign orders . However, Fore ign Subscr ibers can take
a d v a n t a g e o f o u r N E W C o m b i n a t i o n L i b r a r y D i s k a n d M a g a z i n e s u b s c r i p t i o n r a t e s .

Book Of Softkeys: Volume 1: $17.95 Volume 2: $22.95
US funds d rawn on US banks . A l l fo re ign o rders sen t A IR RATES.

Description of Available Back Issues
Sofikeys \ Under Fire] Pegasus][| Take

1 (revisited) | Flight Simulator n vl.05 (part 2) |
Readers' Sofikeys \ Magic Slate | Alter Ego |
Rendezvous 1 Quicken | Story Tree | Assembly
Language Tutor | Avalon Hill games | Dark Crystal |
Features \ Playing Karateka on a Ik \ Track Finder !
Sylk to Dif | Core \ Breaking In: tips for beginners |
Copy][Plus 6.0: a review The DOS Alterer |

Sofikeys \ Flight Simulator U v 1.05 |
AutoDuel i Readers' Sofikeys \ Critical Reading |
Troll's Tale | Robot War | General Manager |
Plasmania | Telarium Software | Kidwriter vl.O | Color
Me I Features \ ScreenWriter meets Flashcard | The
Bus Monitor | Mousepaint for non-Apples | Core | The
Bard's Dressing Room | Advanced Playing Techniques \
Championship Lode Runner |

Sofikeys \ Hi-res Cribbage | Olympic
Decathlon] Revisiting F-15 Strike Eagle | Masquerade |
The Hobbit | Readers' Sofikeys | Pooyan | The Perfect
Score I Alice in Wonderland | The Money Manager |
Good Thinking | Rescue Raiders | Feature | Putting a
New F8 on Your Language Card | Core \ Exploring
ProDOS by installng a CPS Clock Driver |

Sofikeys \ Crisis Mountain | Terripin
Logo I Apple Logo II | Fishies 1.0 | SpellWorks |
Gumball | Readers' Sofikeys \ Rescue at Rigel | Crazey
Mazey | Conan | Perry Mason: The Case of the
Mandarin Murder | Koronis Rift | Feature \ More ROM
Running | Core \ Infocom Revealed |

Sofikeys \ Word Juggler | Tink! Tonk! |
Sundog v2.0 | G.I. Joe & Lucas Film's Eidolon i
Summer Games II | Thief | Instant Pascal | World's
Greatest Football Game | Readers' Sofikeys \ Graphic
Adventure #1 | Sensible Grammar & Extended
Bookends i Chipwits i Hardball | King's Quest II | The
World's Greatest Baseball Game | Feature | How to be
the Sound Master | Core \ The Mapping of Ultima IV |

Sofikeys I Revisiting Music Construction
Set I Cubit I Baudville Software | Hartley Software |
Bridge | Early Games for Young Children | Tawala's
Last Redoubt | Readers' Sofikeys | Print Shop
Companion | Kracking Vol II | Moebius | Mouse
Budget, Mouse Word & Mouse Desk | Adventure
Construction Set | Feature \ Using Data Disks With
Microzines | Core \ Super lOB vl.5 a Reprint |

1 Sofikeys \ Trivia Fever | The Original
Boston Computer Diet | Lifesaver | Synergistic
Software | Blazing Paddies | Zardax | Readers'
Sofikeys \ Time Zone | Tycoon | Earthly Delights |
Jingle Disk | Crystal Caverns | Karate Champ |
Feature \ A Little Help With The Bard's Tale | Core \
Black Box i Unrestricted Ampersand |

Sofikeys \ Millionaire | SSI's RDOS |
Fantavision | Spy vs. Spy | Dragonworld | Readers'
Sofikeys \ King's Quest | Mastering the SAT | Easy as
ABC I Space Shuttle | The Factory | Visidex LIE |
Sherlock Holmes | The Bards Tale 1 Feature j
Increasing Your Disk Capacity | Core | Ultimaker IV,
an Ultima IV Character Editor I

Sofikeys | Threshold \ Checkers v2.1 |
Microtype | Gen. & Organic Chemistry Series | Uptown
Trivia | Murder by the Dozen | Readers' Sofikeys \
Windham's Classics | Batter Up | Evelyn Wood's
Dynamic Reader | Jenny of the Prairie | Learn About
Sounds in Reading \ Winter Games | Feature \
Customizing the Monitor by Adding 65C02
Disassembly | Core \ The Animator |

Sofikeys \ Ultima IV | Robot Odyssey |
Rendezvous | Word Attack & Classmate | Three from
Mindscape | Alphabetic Keyboarding | Hacker] Disk
Director | Lode Runner | MIDI/4 | Readers' Sofikeys \
Algebra Series | Time is Money | Pitstop n | Apventure
to Adantis | Feature \ Capturing the Hidden Archon
Editor I Core \ Fingerprint Plus: A Review | Beneath
Beyond Castle Wolfenstein (part 2) |

Sofikeys \ Microzines 1-5 | Microzines
7-9 I Microzines (alternate method) | Phi Beta Filer |
Sword of Kadash | Readers' Sofikeys | Another Miner
2049er | Learning With Fuzzywomp | Bookends 1
Apple Logo II I Murder on the Zindemeuf | Features \
Daleks: Exploring Artificial Intelligence | Making 32K
or 16K Slave Disks | Core \ The Games of 1985: pan
II I

Sofikeys \ Cannonball Blitz 1 Instant
Recall I Gessler Spanish Software | More Stickybears |
Readers' Sofikeys \ Financial Cookbook | Super
Zaxxon | Wizardry 1 Preschool Fun | Holy Grail |
Inca I 128K Zaxxon | Feature \ ProEdit | Core | Games
of 1985 part I 1

Sofikeys \ DB Master 4.2 | Business
Writer | Barron's Computer SAT | Take 1 | Bank Street
Speller | Where In The World Is Carmen Sandiego |
Bank Street Writer 128K ! Word Challenge | Readers'
Sofikeys \ Spy's Demise | Mind Prober | BC's Quest For
Tires | Early Games | Homeword Speller | Feature |
Adding IF THEN ELSE To Applesoft i Core \ DOS To
ProDOS And Back I

Sofikeys \ Electronic Arts software |
Grolier software | Xyphus | F-15 Strike Eagle | Injured
Engine | Readers' Sofikeys | Mr. Robot And His Robot
Factory | Applecillin II | Alphabet Zoo ! Fathoms 40 |
Story Maker | Early Games Matchmaker | Robots Of
Dawn I Feature | Essential Data Duplicator copy
parms | Core \ Direct Sector Access From DOS | ..

Sofikeys | Miner 2049er i Lode Runner |
A2-PB1 Pinball | Readers'Sofikeys \ The Heist | Old
Ironsides | Grandma's House | In Search of the Most
Amazing Thing | Morloc's Tower | Marauder 1 Sargon
in I Features \ Customized Drive Speed Control | Super
lOB version 1.5 | Core \ The Macro System |

Sofikeys \ Sargon HI | Wizardry: Proving
Grounds of the Mad Overlord and Knight of Diamonds |
Reader' Sofikeys \ The Report Card VL t i Kidwriter i
Feature \ Apple][Boot ROM Disassembly | Core \ The
Graphic Grabber v3.0 | Copy 11+ 5.0: A Review | The
Know-Drive: A Hardware Evaluation | An Improved
BASIC/Binary Combo |

Readers' Sofikeys \ Rendezvous With
Rama | Peachtree's Back To Basics Accounting System |
HSD Statistics Series | Arithmetickle | Arithmeldcks and
Early Games for Children | Features \ Double Your
ROM Space | Towards a Better F8 ROM | The Nibbler:
A Utilit>' Program to Examine Raw Nibbles From Disk |
Core I The Games of 1984: In Review-part n |

Sofikeys \ The Print Shop | Crossword
Magic I The Standing Stones | Beer Run 1 Skyfox |
Random House Disks | Features | A Tutorial For Disk
Inspection and the Use Of Super lOB i S-C Macro
Assembler Directives (reprint) | Core \ The Graphic
Grabber For The Print Shop | The Lone Catalog
Arranger vl.O Part 2 |

Sofikey i Sensible Speller for ProDOS
Sideways | Readers' Sofikeys \ Rescue Raiders | Sheila
Basic Building Blocks | Artsci Programs 1 Crossfire
Feature \ Secret Weapon: RAMcard | Core \ The
Controller Writer | A Fix For The &yond Castle
Wolfenstein Softkey | The Lone Catalog Arranger
Part 1 1

Sofikeys \ Zaxxon | Mask of the Sun] Crush |
Crumble & Chomp | Snake Byte | DB Master |
Mouskattack | Features \ Making Liberated Backups
That Retain Their Copy Protection | S-C Assembler:
Review | Disk Directory Designer | Core \ Corefiler:
Part I I Upper & Lower Case Output for Zork |

1 Sofikeys \ Data Reporter 1 Multiplan | Zork |
Features \ PARMS for Copy n Plus | No More Bugs |
APT's for Choplifter & Cannonball Blitz | 'Copycard'
Reviews \ Replay | Crackshot | Snapshot | Wildcard i

C O R E 3 G a m e s :
Constructing Your Own Joystick | Compiling Games |
GAME REVIEWS: Over 30 of the latest and best | Pick
Of The Pack: All-time TOP 20 games | Destructive
Forces | EAMON | Graphics Magician and
GraFORTH | Dragon Dungeon |

U t i l i t e s :C O R E 2
Dynamic Menu | High Res: Scroll Demo | GOTO
Label: Replace | Line Find | Quick Copy: Copy | ..

C O R E 1 G r a p h i c s :
Memory Map | Text Graphics: Marquee 1 Boxes |
Jagged Scroller | Low Res: Color Character Chart |
High Res: Screen Cruncher | The UFO Factory |
Color I Vector Graphics:Shimmering Shapes | A Shape
Table Mini-Editor | Block Graphics: Arcade Quality
Graphics for BASIC Programmers | Animation |

Hardcore Computing 3
HyperDOS Creator | Menu Hello 1 Zyphyr Wars |
Vector Graphics | Review of Bit Copiers | Boot Code
Tracing | Softkey lOB i Interview with 'Mike'
Markkula |

For special savings,
c o n s u l t o u r

^Holiday Specials Ad*

''Super lOB
C o l l e c t i o n

• What could possibly be better than receiving COMPUTIST every month, typing in the Super iOB controilers and
deprotecting your favorite software? How about having all the controllers ever printed in COMPUTIST at your fingertips?
With The Super IOB Collection Volumes I & II, you have just that and more.

• Each volume (supplied on a DOS 3.3 disk) contains at least 60 Super IOB controllers including the standard, swap,
newswap and fast controllers. In addition, each disk has the Csaver program from COMPUTIST No. 13. But wait! You
also get version 1.5 of Super IOB and a menu hello program that lists the available controllers and, when you select one,
automatically installs it into Super IOB and RUNs the resulting program.*

• Severai of the controllers deprotect the software completely with no further steps. This means that some programs
are oniy minutes away from deprotection (with virtuaiiy no typing).

• The issue of COMPUTIST in which each controller appeared is indicated in case further steps are required to deprotect
a particular program.f

V o l u m e 1 V o l u m e 2
Volume 1 of the Super IOB collection covers ali
the controiiers appearing in COMPUTIST No. 9
through No. 26. In addition, the newswap and fast
c o n t r o l l e r s f r o m C O M P U T I S T N o . 3 2 a r e
included. The following 60 controllers are on
v o l u m e 1 :

Advanced Blackjack, Alphabet Zoo, Arcade Machine,
Archon n, Archon, Artsci Software, Bank Street Writer,

Barrons SAT, Beyond Castle Wolfenstein, BSW //c
Loader, Castle Wolfenstein, Computer Preparation:

SAT, Dazzle Draw, DB Master 4 Plus, Death in the
Carribean, Dino Eggs, DLM Software, Electronic Arts,

F-15 Strike Eagle, Fast Controller, Fathoms 40,
Financial Cookbook, Gessler Software, Grandma's
House, The Heist, In Search of the Most Amazing

Thing, Instant Recall, Kidwriter, Lions Share, Lode
Runner, Mastertype, Match Maker, Miner 2049er, Minit
Man, Mufplot, Newsroom, Newswap controller. Penguin

Software, Print Shop Graphic Library, Print Shop,
Rendezvous with Rama, Rockys' Boots, Sargon EQ, Sea

Dragon, Shiela, Skyfox, Snooper Troops, Standard
controller. Stoneware Software, Summer Games, Super

Controller, Super Zaxxon, Swap Controller, TAC,
Ultima in. Word Challenge, Xyphus, Zaxxon

Volume 2 of the Super IOB collection covers all
the controllers appearing in COMPUTiST No. 27
through No. 38. The following 65 controllers are
o n v o l u m e 2 :
Alice in Wonderland, Alphabetic Keyboarding, Alternate

Reality, Autoduel, Checkers, Chipwits, Color Me,
Conan.data, Conan.prog, CopyDOS, Crisis Mountain,
Disk Director, Dragonworld, Early Games, Easy as

ABC, F-15 Strike Eagle, Fantavision, Fast controller,
Fishies, Flight Simulator, Halley Project, Hartley

Software (a). Hartley Software (b), Jenny of the Prarie,
Jingle Disk, Kidwriter, Kracking Vol U, Lode Runner,
LOGO n (a), LOGO n (b). Masquerade, Mastering the

SAT, Microtype: The Wonderftil World of Paws,
Microzines 1, Microzines 2-5, Miner 2049er, Mist &

View to a KiU, Murder on the Zindemeuf, Music
Construction Set, Newswap controller, Olympic

Decathlon, Other Side, Phi Beta Filer, Pitstop U, Print
Shop Companion, RDOS, Robot War, Spy vs Spy,

Standard controller, Sundog V2, Swap controller. Sword
of Kadash, Synergistic Software, Tawala's last Redoubt,
Terripin Logo, Threshold, Time is Money, Time Zone,
Tink! Tonk!, Troll 's Tale, Ultima IV, Wilderness, Word
Attack & Classmate, World's Greatest Baseball, World's

Grea tes t Foo tba l l

To Order: Send $9.95 for each volume or $19.95 for a complete package that includes: both disks, a reprint of "Disk Inspection and
the use of Super IOB" and COMPUTIST No. 32. U.S. funds drawn on U.S. banks. Foreign orders (other than Canada or Mexico) add
20% shipping. Washington state residents add 7.8% sales tax. Mail orders to: Super IOB Collection; FOB 110846; Tacoma, WA 98411

♦Requires at least 64K of memory.

tAlthough some controllers will completely deprotect the program they were designed for, some will not and therefore require their
corresponding issue of COMPUTIST to complete the deprotection procedure.

